
Department of Communications and Networking

Application Layer Network
Address Translation

Juha-Matti Tilli

LICENTIATE
THESIS

Aalto University
LICENTIATE THESIS 2022

Application Layer Network Address
Translation

Juha-Matti Tilli

Thesis submitted for examination for the degree of Licentiate
of Science in Technology.
Otaniemi, 08 Sep 2022

Supervisor: professor Raimo Kantola
Advisor: professor Raimo Kantola
Examiner: professor Jussi Kangasharju

Aalto University
School of Electrical Engineering
Department of Communications and Networking

Abstract
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi

Author
Juha-Matti Tilli

Title
Application Layer Network Address Translation

School School of Electrical Engineering

Department Department of Communications and Networking

Research field Networking Technology Code S041Z

Supervisor professor Raimo Kantola

Advisor professor Raimo Kantola

Examiner professor Jussi Kangasharju

Level Licentiate thesis Date 08 Sep 2022 Pages (0)+x+75 Language English

Abstract
The most important issues facing the Internet are lack of security and address space

exhaustion. Flooding attacks are easy today due to for example the design of transmission
control protocol (TCP). QUIC may offer some remedy for new applications but it is unlikely
to replace TCP in all legacy applications. Most modern TCP endpoints have support for
SYN cookies, but middle-points like firewalls may not be able to protect themselves.

Address space of Internet protocol version 4 (IPv4) is not sufficient to give even one
address to every Internet user today. At the same time, Internet of Things (IoT) is gaining
foothold, meaning the device count is expected to exceed Internet user count by orders of
magnitude.

To counter these problems, network address translation (NAT) has emerged as a solution.
However, NAT has poor characteristics when used on the server side.

In this thesis, SYN cookies and their middle-point implementations within SYN proxy
are refined compared to the state of the art. One result of the thesis is a multithreaded
user space TCP SYN proxy that is able to protect servers and legacy firewalls against
SYN flooding attacks. It is also able to act as the protecting component of a novel firewall
called Realm Gateway (RGW) that uses standard domain name system (DNS) queries for
NAT traversal.

Additionally, an application layer NAT (AL-NAT) technique allowing NAT traversal
for protocols where the client sends the first message containing host name of the server
is defined and implemented. As a lightweight implementation of AL-NAT, a component
supporting AL-NAT without security policy is provided.

Finally, for protocols such as secure shell (SSH) that are incompatible with AL-NAT,
carrier grade TCP proxy (CG-TP) is implemented to work along with AL-NAT and verified
to work with OpenSSH and other applications with similar characteristics.

Keywords transmission control protocol, network address translation, SYN proxy,
application layer gateway

ii

Tiivistelmä
Aalto-yliopisto, PL 11000, 00076 Aalto www.aalto.fi

Tekijä
Juha-Matti Tilli

Työn nimi
Sovellustason verkko-osoitteiden muunnos

Korkeakoulu Sähkötekniikan korkeakoulu

Laitos Tietoliikenne- ja tietoverkkotekniikan laitos

Tutkimusala Tietoverkkotekniikka Koodi S041Z

Valvoja professori Raimo Kantola

Ohjaaja professori Raimo Kantola

Tarkastaja professori Jussi Kangasharju

Työn laji Lisensiaatintutkimus Päiväys 08.09.2022 Sivuja (0)+x+75 Kieli englanti

Tiivistelmä
Suurimmat Internetin ongelmat tänä päivänä ovat tietoturvan puute ja osoiteavaruu-

den ehtyminen. Palveunestohyökkäykset ovat helppoja tänä päivänä johtuen protokollan
transmission control protocol (TCP) toteutuksesta. QUIC saattaa tarjota parannuksia
uusille sovelluksille mutta ei korvanne TCP:tä kaikissa vanhoissa sovelluksissa. Useim-
mat modernit TCP-toteutukset sisältävät tuen SYN cookieille, mutta keskipisteiden
toteutukset kuten palomuurit eivät välttämättä kykene puolustamaan itseään.

Protokollan Internet protocol versio 4 (IPv4) osoiteavaruus ei riitä antamaan edes yhtä
osoitetta jokaiselle Internetin käyttäjälle tänään. Samanaikaisesti esineiden Internet
saa jalansijaa, tarkoittaen että Internetin laitemäärän odotetaan kasvavan kertaluokkia
suuremmaksi kuin Internetin käyttäjämäärän.

Näiden ongelmien ratkaisuun verkko-osoitteiden muunnos on ilmestynyt ratkaisuksi.
Kuitenkin verkko-osoitteiden muunnoksella on huonoja ominaisuuksia, jos sitä käytetään
palvelinpuolella.

Tässä lisensiaatintyössä SYN cookieita ja niiden keskipistetoteutuksia SYN proxys-
sä kehitetään eteenpäin. Yksi työn tulos on monisäikeinen käyttäjäosoiteavaruudes-
sa pyörivä TCP SYN proxy, joka osaa suojata palvelimia ja palomuureja SYN flood
-palvelunestohyökkäyksiltä. Se voi myös toimia suojaavana komponenttina realm ga-
tewaylle (RGW), joka on uusi palomuuri joka käyttää tavallisia domain-nimikyselyitä
verkko-osoitteiden muunnoksen läpäisyyn.

Lisäksi sovellustason verkko-osoitteiden muunnos (application layer network address
translation, AL-NAT) määritellään ja toteutetaan. AL-NAT toimii protokollille joissa
asiakasohjelma lähettää ensimmäisen viestin sisältäen palvelinkoneen nimen. Kevyenä
AL-NAT toteutuksena tarjotaan komponentti, joka tukee AL-NAT:ia muttei minkäänlaista
tietoturvasäännöstöä.

Lopuksi protokollille, kuten secure shell (SSH), jotka eivät toimi AL-NAT:n kanssa
tarjotaan operaattoritason TCP proxy (carrier grade TCP proxy, CG-TP). CG-TP:n varmis-
tetaan toimivan esimerkiksi OpenSSH-etäkäyttöohjelman kanssa.

Avainsanat transmission control protocol, verkko-osoitteiden muunnos, SYN proxy,
sovellustason yhdyskäytävä

iii

Preface

This thesis has been done in the Department of Communications and

Networking of School of Electrical Engineering at Aalto University. I

started doctoral studies officially in late 2015, although my part-time

study leave started only in September 2016. In March 2017, I started to

implement what eventually became PPTK and nmsynproxy. AL-NAT was

invented in June 2018, and code implementation based on nmsynproxy

quickly started.

I would like to thank the thesis advisor and supervisor Raimo Kantola for

having belief in me despite the fact that I originally studied micro- and nan-

otechnology and not communications engineering in my Master’s degree.

Also big thanks to him for offering a part-time job at Aalto University and

for Nokia Bell Labs for accepting a study leave. Alas, a second study leave

was not accepted so I left Nokia to work at Foreca as my main job, where

management was more tolerant of a part-time job at Aalto University.

Many interesting discussions with Jesus Llorente Santos are worthy of

an acknowledgement too. Those discussions have genuinely challenged my

approaches, and the fact that my approaches have stood unchanged can be

probably considered a strength of the approaches.

Also big thanks for Maria Riaz for doing her Master’s thesis enthusiasti-

cally. As an advisor, I had to answer various questions related to applica-

tion layer gateways often, but this thesis would not be the same without

those constant questions. Those questions have affected my thought pro-

cess and hopefully have positively affected the clarity of this thesis.

I would also like to thank Microsoft for a generous award based on

discovery of the FragmentSmack[40] IP fragmentation attack and Emil

Aaltonen Foundation for a grant.

Espoo, September 08, 2022

Juha-Matti Tilli

iv

Author’s contribution

The author is the sole author of ldpairwall, nmsynproxy (apart from very

minor control scripts by Jesus Llorente Santos), PPTK (apart from very

minor contributions by Vladis Dronov and apart from some existing code

that was used for testing comparisons with custom code), abce, stirmake,

cghcpcli and YaLe. The author was also the advisor to the Master’s thesis

of Maria Riaz where a Python-based application layer gateway using YaLe

was implemented to extend realm gateway and co-authored the conference

paper about this work. Application layer gateway can achieve the same

NAT traversal that AL-NAT achieves but terminates both sides of the

connection at the middlebox, thus causing the endpoint application to see

the middlebox as the originator of the connection, hiding the IP address of

the true originator.

The author is the inventor of AL-NAT. However, the name AL-NAT was

proposed by Raimo Kantola after being told of the invention. Originally the

name was NG-AANAT (next generation application aware NAT), but the

AL-NAT is significantly better name for such a sophisticated technology.

This manuscript has been fully written by the author.

v

List of acronyms

5G Fifth generation of mobile telecommunications

ACK ACKnowledge bit in TCP segment

ALG Application layer gateway

AL-NAT Application layer NAT

CG-TP Carrier grade TCP proxy

CPU Central processing unit

DDoS Distributed DoS attack

DF Don’t fragment bit in IPv4 header

DHCP Dynamic host configuration protocol

DIX Digital equipment corporation (DEC), Intel, Xerox

DL Downlink (from Internet to local network)

DNS Domain name system

DoS Denial of service attack

DS Differentiated services field in IP header

FIN FINalize bit in TCP segment

FTP File transfer protocol

HTTP Hypertext transfer protocol

HTTPS Hypertext transfer protocol, secure

ICMP Internet control message protocol

IEEE Institute of Electrical and Electronics Engineers

IETF Internet engineering task force

IMAP Internet mail access protocol

I/O Input/output

IP Internet protocol

IPv4 IP version 4

IPv6 IP version 6

LAN Local area network

LLC Logical link control

LRU Least recently used (cache dropping policy)

vi

List of acronyms

MAC Media access control (usually referring to address)

MPPS Million packets per second

MTU Maximum transmission unit

NAPT Network address and port translation

NAT Network address translation

NOOP No operation

OpenSSH The most popular open source implementation of SSH

PF Packet filter (in OpenBSD)

PPTK Packet processing toolkit (in Github/Aalto5G)

QUIC A transport protocol designed to replace TCP

RFC Request for comments (document series)

RGW Realm gateway

RST ReSeT bit in TCP segment

SACK Selective acknowledgement option in TCP

SMTP Simple mail transfer protocol

SNAP Subnetwork access protocol

SNI Server name indication (field in TLS)

SOCKS The SOCKS proxy protocol

SSH Secure shell

SSL Secure sockets layer (referring to old versions of TLS)

SYN SYNchronize bit in TCP segment

TCP Transmission control protocol

TLS Transport layer security

TTL Time to live

UDP User datagram protocol

UL Uplink (from local network to Internet)

UNSAF Unilateral self-address fixing

URI Uniform resource identifier (roughly similar to URL)

URL Uniform resource locator (roughly similar to URI)

VoIP Voice over IP

WLAN Wireless LAN

YaLe Yet another lexer eliminator (in Github/Aalto5G)

vii

Contents

Abstract ii

Tiivistelmä iii

Preface iv

Author’s contribution v

List of acronyms vi

Contents viii

1. Introduction 1

2. Background theory and related work 4

2.1 Network address translation 4

2.1.1 NAT theory . 4

2.1.2 NAT traversal . 5

2.2 TCP window . 8

2.3 SYN cookies . 9

2.4 SYN proxy . 10

2.5 Realm gateway . 12

2.5.1 RGW firewall . 13

2.5.2 RGW attacks . 13

2.5.3 RGW attack mitigations 14

2.5.4 Application layer gateway 15

2.5.5 Shortcomings of RGW 16

3. Improved SYN cookies and nmsynproxy 18

3.1 Layer 2 SYN proxy . 18

3.2 Header checksums . 19

viii

Contents

3.3 Hybrid SYN cookies . 21

3.4 Hybrid SYN proxy . 22

3.5 Fragment handling strategy 23

3.6 State machine . 24

3.7 Improved hash limiting . 26

3.8 Installation instructions . 27

4. Application layer network address translation 29

4.1 Technical overview . 29

4.1.1 Technical details 29

4.1.2 State machine . 31

4.1.3 Packet loss and retransmissions 32

4.2 Protocol analysis . 33

4.2.1 TCP . 33

4.2.2 QUIC . 34

4.2.3 Application-layer protocols 35

4.3 Carrier grade TCP proxy for unsupported TCP protocols . 38

4.3.1 Carrier grade TCP proxy in server-side middlebox 39

4.3.2 Carrier grade TCP client in client-side middlebox 40

4.3.3 New Internet architecture of cooperative firewalls 42

4.3.4 Carrier grade TCP client directly in client com-

puter . 42

4.4 Installation instructions . 44

5. Theoretical analysis 45

5.1 nmsynproxy cryptography strength 45

5.2 nmsynproxy memory usage 46

5.3 ldpairwall memory usage 47

5.4 ldpairwall requirements analysis 48

5.4.1 RFC4787 . 48

5.4.2 RFC5382 . 52

5.4.3 RFC5508 . 54

6. Testing 59

6.1 nmsynproxy correctness tests 59

6.2 nmsynproxy performance tests 60

6.3 Protocol and hostname detection performance 61

6.4 HTTP and TLS header size study 62

6.5 AL-NAT traversal tests . 65

ix

Contents

6.5.1 Testing environment 65

6.5.2 Outgoing NAT connection 65

6.5.3 AL-NAT unencrypted connection 66

6.5.4 AL-NAT encrypted connection 66

6.5.5 HTTP CONNECT proxy 67

6.5.6 Port control protocol, TCP 67

6.5.7 Port control protocol, UDP 67

7. Conclusions 68

7.1 Future work . 69

Bibliography 71

x

1. Introduction

Arguably the two most severe issues in today’s Internet are shortage of

IPv4[47] addresses along with very slowly progressing IPv6 transition

during adoption of Internet of Things[2] and easiness of distributed denial

of service (DDoS) attacks. In this thesis, solutions are proposed for both.

Internet is facing an IPv4 address shortage. To solve this, transition to

IPv6[16] has been proposed starting from IPng[11] and the first specifi-

cation of IPv6[15] but it is not without its drawbacks. For example, IPv6

multiplies IP header overhead by two, which is a genuine problem for

VoIP[25] because low latency required necessitates frequent packets, and

good lossy compression algorithms make those packets small. Furthermore,

IPv6 is not backwards-compatible with IPv4, so devices having only IPv4

connectivity cannot reach IPv6-only servers. An already fully deployed

partial solution for IPv4 address shortage is classless inter-domain routing

(CIDR), but it cannot magically create a large address space, just allowing

more efficient use of the already limited address space[23].

To solve the IPv4 address shortage, NAT[21] has been defined. Some

variants of it allow masquerading multiple hosts behind a single IPv4

address, and are typically implemented as NAPT where both the source

address and source port are translated. NAT solves some other issues in

addition to the shortage of addresses. For example, NAT allows using static

IP addresses in the local network even if the global address is dynamically

distributed by e.g. DHCP[17]. Also, NAT increases security by making it

impossible by design to connect to protected hosts because they are not

addressable. Furthermore, NAT is an automatic form of routing, meaning

one can set up an entire network behind a router without reconfiguring the

routing tables of other routers either manually or with a routing protocol.

Where NAT falls short is when servers need to be run behind a NAT

middlebox. Typically, the solution is manual port mapping, so that e.g.

1

Introduction

port 80 of NAT middlebox is mapped to port 80 of a host behind the

NAT middlebox. However, the NAT middlebox, typically having only 1 IP

address, has only one TCP port 80. If one needs to run two web servers

behind a NAT middlebox, the other has to use an alternative port such as

8080.

A solution to NAT traversal could be application layer gateway[53]. The

incoming TCP connection is terminated at the NAT middlebox. The client

sends its request, which at least for HTTP[22] and TLS[51] contains the

host name of the server in plain text. This information is used to open

another TCP connection between the NAT middlebox and the server in

private address space. This termination of TCP connection at the NAT

middlebox, however, requires lots of resources for large connection counts,

and thus could make the NAT middlebox vulnerable to an attack. In

particular, by terminating the TCP connection at the NAT middlebox, the

data may take up lots of kernel memory used for retransmit buffers.

There is an advanced technique originally designed to protect vulnerable

endpoint hosts from DDoS attacks that is called SYN proxy. This SYN

proxy first temporarily terminates the opening of a TCP connection at

the SYN proxy middlebox. When the connection is fully open, the TCP

connection is handed off to the protected host. In this thesis, a fast netmap-

based SYN proxy is implemented as a layer 2 inline element. The SYN

proxy uses SYN cookies to protect itself from a DDoS attack. The author

has reason to believe the SYN cookie and SYN proxy implementations in

this SYN proxy are the most advanced and sophisticated implementations

to date.

There is a SYN proxy in Linux netfilter subsystem, but the Linux imple-

mentation of SYN proxy is deficient in handling closed port RST responses.

Also, it only works as a layer 3 device without advanced configuration

tricks involving Open vSwitch that J. Llorente Santos discovered and that

allow using layer 2 operation.

If the NAT middlebox is given multiple IPv4 addresses, it can be made

into a component called RGW[34] that uses standard DNS[37, 38] queries

to an integrated DNS server as indications of where to forward the con-

nection. However, this system is vulnerable to SYN flooding[20] and DNS

flooding attacks. The solution against DNS flooding is a reputation system.

The solution against SYN flooding is a SYN proxy, such as the compo-

nent implemented in this thesis. In theory, such a system can also work

given only one IPv4 address, but in practice many simultaneous incoming

2

Introduction

connections may end up being a troublesome situation.

As a further refinement on the SYN proxy technique, a NAT middlebox

called AL-NAT is implemented. This middlebox temporarily terminates

(proxies) the opening of a TCP connection at the middlebox. It then waits

for the client to send its first data packets, extracts the hostname from the

first data packets, and hands off the connection to the correct protected

host.

This thesis is organized as follows. In Chaper 2, background theory and

related work are discussed. Chapter 3 introduces nmsynproxy with its

improved SYN cookie and SYN proxy support. Chapter 4 discusses AL-

NAT. Chapter 5 includes various theoretical analyses of the implemented

solutions. Chapter 6 describes what kind of testing has been performed for

the components. Finally, Chapter 7 concludes this thesis.

3

2. Background theory and related work

This chapter first reviews the theory behind network address translation

(NAT). It is an existing solution that builds the background for part of this

work. Then SYN cookies and SYN proxy are discussed as denial of service

(DoS) mitigation mechanisms. Finally, realm gateway (RGW) is analyzed

in detail for its role in NAT traversal.

2.1 Network address translation

This section discusses network address translation. For more details, the

reader can refer to e.g. [69] for an excellent historical description of NAT.

2.1.1 NAT theory

Network address translation (NAT) is a solution already widely deployed

to mitigate IPv4 address exhaustion problem. In typical deployments,

using NAT means that a network uses private addresses not visible to the

Internet. Whenever a packet from this network is sent to the Internet, the

source IP address is changed to be a publicly available address. Typically,

NAT is implemented as network address and port translation (NAPT),

which translates the TCP[48] or UDP[45] ports too. Protocols not having

ports do not obviously work with NAPT. The reason for preferring NAPT is

that it allows one to masquerade multiple private IPv4 addresses behind a

single public IPv4 address, therefore allowing more efficient use of IPv4

addresses.

A good NAT implementation translates not only direct TCP/UDP packets

but also ICMP[46] responses to TCP/UDP packets. However, there are

many flawed implementations of firewalls and/or NAT that do not translate

ICMP responses but rather drop them.

NAT may be tuned for security or for connectivity. A connectivity-tuned

4

Background theory and related work

NAT may prefer retaining port numbers and may open a port for all in-

coming connections after an outgoing connection has been established. For

example, a connectivity-tuned NAT may open the connection 10.1.2.3:1500

(local internal address) Ñ 192.0.2.5:80 (remote address). Then it translates

the private IP address and port pair 10.1.2.3:1500 to public IP address

and port pair 192.0.2.2:1500. If the port 1500 has not been already used,

the port number is retained. Then, when somebody wants to connect

192.0.2.6:2000 Ñ 192.0.2.2:1500, a connectivity-tuned NAT will forward

the incoming connection to 10.1.2.3:1500. Essentially, after a NAT has

established a mapping, it is remembered, it is not dependent on the other

endpoint (endpoint-independent mapping) and also incoming connections

are accepted for this mapping. This connectivity-tuned NAT is preferable

for carrier grade NAT[54] because the job of the carrier is not to offer

security but rather connectivity.

In contrast, a home router may very well have the property that once

a mapping is established, it is used only for outgoing connections and

never for new incoming connections. This allows better security than a

connectivity-tuned NAT.

Several networks have been decided to not be allocated in the Internet:

10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/24[50]. There is also the network

for carrier grade NAT[54] which is 100.64.0.0/10[63]. These networks are

guaranteed not to be allocated in the Internet, so a NAT solution can

choose to use any of these networks as private addresses. However, the

carrier grade NAT network is meant to be used by the carrier, so end-users

should not choose addresses in this range.

2.1.2 NAT traversal

Because NAT masquerades multiple private IPv4 addresses behind a

single public IPv4 address, incoming connections cannot always be handled.

Such incoming connections may be needed for e.g. peer-to-peer Internet

telephony applications and peer-to-peer gaming. In such applications, both

peers can be behind a NAT. Thus, it becomes very important to allow NAT

traversal, for which there are many different solutions.

One of the simplest NAT traversal solution is static port mapping. One

configures the router to forward all traffic to ports 80 and 443 to the web

server. This allows having at most one such server behind a NAT having

one IPv4 address. If multiple servers are required, the other server needs

to use a non-standard port such as 8080 and 8443.

5

Background theory and related work

Figure 2.1. Deployment of NAT in (a) a non-nested configuration and (b) carrier grade
NAT plus private NAT.

6

Background theory and related work

Version IHL DSCP ECN Total length

Identification Flags Fragment offset

Time to live Protocol Header checksum

Source IP address
Destination IP address

Options (if IHL > 5)
Destination port

Sequence number

Options (if Data off > 5)

Source port

Data off Reserved Flags

Urgent pointerChecksum

Window

Acknowledgement number

Figure 2.2. IP and TCP headers and the fields a network address translator needs to
touch. A network address translator primarily touches source and destination
IP address and port fields. However, to make the header valid again, both
checksums in the IP and TCP header need to be updated.

An enhancement to static port mapping is possible by using a protocol

that is designed to control port mappings of a NAT middlebox. The first

protocol to allow this was Internet Gateway Device (IGD) protocol of Uni-

versal Plug and Play (UPnP). This has not been standardized in any RFC,

but is rather part of an ISO/IEC standard 29341. The UPnP+IGD is a very

complex protocol, being a prime example of overengineering. Implementing

it from the scratch is very hard, and picking an existing implementation

done in an unsafe language is prone to risks, as the implementers have

to incorporate a lot of complexity, thus opening doors for many potential

attacks. Apple designed NAT Port Mapping Protocol (NAT-PMP) in 2005,

and it has been published in a later RFC[12]. In 2013, IETF standardized

Port Control Protocol (PCP)[64] based fortunately on NAT-PMP rather

than UPnP+IGD.

By setting a SOCKS[32] proxy or a HTTP CONNECT proxy on the NAT

middlebox, one can allow TCP connections through the NAT to the private

address space. However, not all clients support such a proxy. It may be

cumbersome to configure such a proxy. For example, a web browser has

only global proxy configuration. The proxy cannot be configured separately

for individual domains. Furthermore, the configuration needs to be man-

ually entered, meaning one cannot in practice use this SOCKS / HTTP

CONNECT proxy approach to host multiple web servers behind a NAT

middlebox.

If NAT supports endpoing independent mappings and is tuned for connec-

tivity rather than security, NAT hole punching is a viable NAT traversal

mechanism. In NAT hole punching, there is a server the job of which is

to determine the endpoint chosen by the NAT. If peer2 wants to connect to

7

Background theory and related work

peer1, before that peer1 connects to portserver. Then portserver tells peer1

what the external port chosen by the NAT is. By opening a listening socket

to the same internal port, peer1 can accept connections to the external port.

In particular, peer2 can connect to peer1 now that the mapping is set and

ports are known. The job of portserver was only to be a globally addressable

server that can tell the port mapping chosen by the NAT.

An application layer gateway (ALG) is also a possibility for NAT traversal.

However, an ALG requires the TCP connection to be terminated at both

sides to the NAT middlebox, meaning it requires lots of memory resources.

Furthermore, an ALG can modify the protocol level traffic in some cases.

An ALG tuned for connectivity rather than for protocol validation can avoid

modifying the protocol level traffic, only using its protocol knowledge for

determining the host name of the server the client wants to connect to.

A novel NAT traversal mechanism is realm gateway (RGW)[34]. In RGW,

standard DNS[37, 38] queries are used for setting up a temporary mapping

for the NAT middlebox. The mapping is expired in 2 seconds or after a

connection arrives, whichever happens sooner. By having e.g. 3 public IPv4

addresses in the NAT middlebox, many simultaneous incoming connections

can be accepted. RGW is analyzed in more detail in Section 2.5.

2.2 TCP window

TCP is a protocol that sends ordered reliable byte streams over an unreli-

able transport (IP). Because the underlying transport has a finite maxi-

mum packet size, a large chunk of data sent needs to be broken to multiple

small packets. Also, there are two factors that can affect how much data

can be sent at once: flow control and congestion control. Flow control

ensures that a fast sender does not overflow a slow receiver, whereas

congestion control ensures that a fast sender does not overflow a slow

network.

The TCP window field is a 16-bit unsigned integer that can hold values

between 0 and 65535, telling how many bytes of new data the sender is

allowed to send without overflowing the receiver. The value 0 means that

the receiver buffer is full and the receiver cannot receive more data. When

the receiver has read some of the data, it sends a window update packet

with a nonzero window. As this packet can be lost, a sender seeing zero

window is supposed to periodically send zero window probes but some TCP

stacks send keepalive packets instead that have the same function (see

8

Background theory and related work

Section 2.4). In response to a zero window probe or a keepalive packet, the

receiver sends a new ACK window update packet with the new window

value.

The TCP window field as originally defined supports windows only up

to 65535 bytes. However, long links such as intercontinental links can

alone due to speed of light have a latency of 0.2 seconds. Therefore, such

a long link could achieve only throughput of approximately 328 kilobytes

per second or approximately 2.6 megabits per second. Even the cheapest

consumer Internet connections today are faster than that. This problem of

limited window limiting throughput was realized and RFC1323[30] defines

a window scale option that bit-shifts the window. Such a scaled window

has a resolution coarser than 1 byte, but can represent larger values. For

example, with window scale option 5, the coarse resolution is 25 “ 32 bytes

so everything below and including 31 bytes has to be treated as zero, but

maximal window is 25 ̈ 65535 “ 2097120 bytes allowing throughput of 84

megabits per second for an intercontinental link.

2.3 SYN cookies

SYN cookies are a mechanism to avoid allocating state for a half-open

connection. A TCP SYN+ACK packet contains two 32-bit numbers that

the other party has to echo back. Firstly, and most importantly, it has a

32-bit initial sequence number. Secondly, if timestamp option is supported,

it has a 32-bit initial timestamp. These 32–64 bits of data can be used to

store connection settings and cryptographical information that prevents

random ACK packets from opening connections.

When the ACK packet arrives in response to the sent SYN+ACK, the

connection is opened solely based on the information in the ACK packet.

Firstly, the stored connection settings are extracted from the sequence

number and the timestamp. Secondly, the cryptographical information is

verified so that a randomly sent ACK packet does not open a connection.

Originally, SYN cookies were proposed by D.J. Bernstein. The original

proposal included a 5-bit timestamp incrementing every 64 seconds that

is an extremely poor way of protecting against replay attacks (because

it wraps very soon). The original proposal also included only encoded

maximum segment size information but not encoded window scaling in-

formation. Thus, when TCP connections were opened according to the

original proposal, their performance suffered in high bandwidth-delay

9

Background theory and related work

product links, as noted by the author in the original proposal: “The biggest

effect of the SYN flood is to disable large windows”[8]. The original proposal

used MD5 as the hash function.

Fortunately, SYN cookies can be updated to be relevant in the modern

times. MD5 is an insecure hash function[62], so SHA1[18] could be consid-

ered instead. However, SHA1 is even slower than MD5 which is already

quite slow. Thus, in this thesis it was decided to follow FreeBSD’s example

and use SipHash[4] as the hash function. Simpler hash functions such

as MurmurHash having a secret seed are vulnerable to seed-independent

multicollisions[5]. The poor 5-bit timestamp in the cookies can be replaced

by two revolving secrets. The secrets can revolve e.g. every 32 seconds:

every 32 seconds, the current secret index is flipped to become the old

secret, which is at the same time regenerated using a cryptographically

secure pseudorandom number generator. When checking a SYN cookie,

both the current and the old secret are checked, giving cookies a validity

time of 32–64 seconds. The window scaling information of the client can

be encoded to the SYN cookie with coarse resolution. It is not an error to

always treat the window as smaller than it actually is according to the

client. In fact, the original SYN cookie implementation just ignores window

scaling data, making a larger error than what is made here. These design

details are somewhat similar to the FreeBSD SYN cookie implementation

that has been explained in detail in a mail to the tcpm mailing list of

IETF1.

2.4 SYN proxy

SYN proxy is a technique used with or without SYN cookies that uses a

proxy middlebox to ensure the connecting client genuinely wants to open

a connection before handing off the opened connection to the true server.

The functioning of SYN proxy is illustrated in Fig. 2.3. First, the client /

remote host sends a SYN. The proxy responds with SYN+ACK but with

zero window. The client responds with ACK. After the proxy has seen

the ACK, it opens the other half of the connection: it sends a SYN to

the protected server host, which responds with SYN+ACK containing the

window of the server. The proxy then responds with ACK to the server

and sends an ACK window update packet to the client. This ACK window

update has a nonzero window, assuming the protected server host sent a

1https://www.ietf.org/mail-archive/web/tcpm/current/msg08071.html

10

https://www.ietf.org/mail-archive/web/tcpm/current/msg08071.html

Background theory and related work

proxyprotected
host

remote
host

SYN

SYN+ACK
window=0

ACK

SYN

SYN+ACK

ACK
ACK window
update

proxyprotected
host

remote
host

SYN

SYN+ACK
window=0

ACK

SYN

RST

RST

a)

b)

Figure 2.3. Establishment attempt of SYN proxied connection for (a) an open port and (b)
a closed port.

nonzero window in the SYN+ACK.

SYN proxies can in theory be nested infinitely. When nesting them,

however, latency adds up and the system sends many window update

packets with zero window to the client before sending the final window

update with nonzero window. In theory, the window update packets with

zero window could be omitted for efficiency.

There are several things that need careful attention when developing a

SYN proxy. For example, the port on the protected server host can be closed.

The proxy will happily open the first half of any connection. However, when

the first half of the connection is fully open, the protected server host can

respond with RST to the SYN packet. An RST in response to a SYN is

actually an RST+ACK packet, very different from an RST in response

to any other packet. The SYN proxy needs to translate the RST+ACK

response to SYN as an RST packet belonging to an existing already opened

connection. Some SYN proxy implementations do not do this. For example,

the Linux netfilter SYN proxy lacks this translation of the RST packet, and

therefore, if one types nc -v -v -v synproxyserver.example.com 12345 where

11

Background theory and related work

12345 is a closed port, one sees the connection remaing open forever in a

stalled state. In contrast, a proper SYN proxy such as the one developed in

this thesis will show for netcat that the connection was opened and then

immediately closed.

Also, a SYN proxy needs to choose several important values in the TCP

header. For example, the TCP initial sequence number of the server

cannot be magically known by the SYN proxy so the SYN proxy needs

to incorrectly guess some TCP initial sequence number and then forever

for the lifetime of the connection translate the TCP sequence number

(and do any TCP checksum translations required by the sequence number

translation). Furthermore, the SYN proxy needs to guess a TCP window

scaling value. The server may or may not choose the same TCP window

scaling value guessed by the SYN proxy, so the SYN proxy needs to forever

translate the window field value by bit-shifting for the lifetime of the

connection. This translation requires the checksum translation, too.

The SYN proxy also needs to cope with packet loss. For example, if the

transmission of SYN to the protected server host has not resulted in a seen

SYN+ACK response, it means either the SYN or SYN+ACK was dropped.

A timed retransmit of SYN ensures the SYN+ACK should be eventually

seen. The ACK window update to the client also can be lost, meaning

the connection may become stuck in a zero window state. To prevent this,

most TCP stacks send zero window probes. However, some stacks send

keepalive packets instead of zero window probes2. In comparison to zero

window probe, a keepalive packet has the sequence number decremented

by one. A proper SYN proxy functions with either type of TCP stack.

There are some already reported implementations of SYN proxy. One

noteworthy implementation is the OpenBSD’s packet filter (PF) that uses

a SYN cache instead of SYN cookies. The Linux netfilter implementation

uses SYN cookies and fails to properly translate RST response to SYN

into an RST within an existing connection. These implementations have

not been discussed in the literature. The literature contains at least one

example of SYN proxy[14], but its source code is apparently unavailable.

2.5 Realm gateway

In this section, Realm gateway (RGW)[34] is introduced. It is a firewall

that offers a novel NAT traversal mechanism that is based on standard
2https://www.spinics.net/lists/netfilter/msg57946.html

12

https://www.spinics.net/lists/netfilter/msg57946.html

Background theory and related work

DNS[37, 38] queries. First, the firewall of RGW with its NAT traversal

support is introduced, and then an application layer gateway extension to

RGW that supports NAT traversal without needing address allocation is

discussed. Finally, some shortcomings of RGW are underlined.

2.5.1 RGW firewall

The realm gateway (RGW) firewall is a component written in Python,

using the Linux netfilter system for connection forwarding. A custom

embedded DNS server is written in Python and included in RGW. The

RGW is assigned a small number of IPv4 addresses, e.g. three addresses,

in what is called a circular pool.

The operation occurs as follows: whenever a client requests IP address

from the DNS server, RGW allocates state of the connection by dynamically

setting up temporary port forwarding for the next 2 seconds. The IP

address of this port forwarding is given to the client in the DNS reply with

TTL=0. When the client connects to the IP address, the temporary port

forwarding is automatically disabled, so the client can connect only once.

An immediate problem occurs if the client can connect multiple times

to the same IP address. This problem occurs e.g. for HTTP[22] and

HTTPS, and therefore, RGW requires an application layer gateway for

these protocols.

If multiple users connect at the same time, the RGW can supply them

with different IPv4 addresses up to the limit of the number of IPv4 ad-

dresses given to RGW. When all IPv4 addresses are already in use for new

incoming connections, the RGW simply does not respond to the UDP DNS

query. Fortunately, a DNS client tries multiple times to resolve the IP

address if the first attempt was not successful.

It needs to be underlined that IPv4 address is reserved only between the

period of sending the DNS response and seeing the TCP SYN packet. For

an hour-long SSH session, the IPv4 address is not reserved for the entire

hour but rather for the time between OpenSSH resolving the IP address

and connecting to the IPv4 address.

2.5.2 RGW attacks

In this subsection, various attacks against RGW are hypothesized to see

how RGW could be vulnerable. All of the attacks are DoS attacks for

the simple reason that RGW has been designed to be secure, and in gen-

13

Background theory and related work

eral against secure systems the only possible attacks are variants of DoS

attacks.

2.5.2.1 DNS flood

Each DNS query causes the RGW to allocate state for the next 2 seconds.

Thus, by flooding the DNS server at a low packet rate, an attacker can

cause the RGW to allocate all IPv4 addresses continuously for the attacker

so that legitimate users cannot connect.

2.5.2.2 SYN flood

By flooding the RGW with a stream of TCP SYN packets for the served

ports[20], the attacker could successfully steal allocated connection state of

other users. Thus, the other users cannot connect and service is effectively

denied for them.

2.5.2.3 Reflector use

By sending lots of TCP SYN packets to the RGW, with spoofed source IPv4

addresses belonging to the true target network, the attacker could use the

RGW as a reflector[42] so that the RGW attacks the true target network

with a high-rate sequence of SYN+ACK packets.

2.5.3 RGW attack mitigations

In this subsection, it is discussed how the various potential attacks against

RGW can be mitigated.

2.5.3.1 DNS flood

Two strategies are used against DNS flooding attacks. The first is a

reputation system. The second is a DNS truncated TCP challenge.

The reputation system assigns each client an initial reputation. If the

client sends DNS queries that result in opening a TCP connection, its

reputation rises. If the client does only DNS queries but does not connect

via TCP after the DNS query, its reputation falls. When allocating state in

situations of high traffic, high-reputation clients are preferred. There is a

working implementation of this mechanism published in Github[33].

Furthermore, DNS truncated TCP challenge may be used. This sets the

truncated bit in the DNS UDP response, indicating the client must connect

via TCP. The original purpose of the truncated bit was for responses that

are so large that they do not fit to a single UDP packet. Here, the truncated

bit is (mis)used to cause the client to connect via TCP as a challenge.

14

Background theory and related work

2.5.3.2 SYN flood

The protection against SYN flood[20] is a SYN proxy sitting in front of the

RGW. For details of how a SYN proxy works, see Section 2.4. The SYN

proxy ensures the RGW sees the connection attempt only after the SYN

proxy has caused the client already to demonstrate its true willingness to

open the connection.

2.5.3.3 Reflector use

Against reflector use, a system to limit responses to incoming TCP SYN

packets is installed. The system allows only a certain amount of SYN+ACK

replies to SYN packets to be sent each second to a single /24 network. The

network size is obviously configurable, but /24 seems like a good choice.

In the custom SYN proxy implemented in this thesis, a more sophisti-

cated hash limiting is employed based on a token bucket algorithm where

a token is added back to the bucket whenever a connection attempt is

successful. Thus, somebody who repeatedly connects successfully, discon-

nects, connects successfully, disconnects, . . . will see all connection succeed

without any kind of throttling.

2.5.4 Application layer gateway

Because RGW does not work with protocols such as HTTP[22] and HTTPS

that may open multiple connections after single DNS address resolution,

an application layer gateway is needed for RGW. Originally, the HTTPS

gateway required installation of server certificates and private keys to the

RGW. This is an intrusion of privacy. The firewall should not be able to

decrypt traffic.

Later, in a Master’s thesis[53], a custom application layer gateway was

implemented where the main benefit is that server certificates and private

keys are not needed in the RGW. It works by sniffing the server name

indication from the TLS ClientHello message.

This implementation has been done in 2 processes per connection ap-

proach where each process handles one direction of the connection. Some

alternative approaches could be: (a) 1 process per connection handling

both directions of the connection in the same process using non-blocking

I/O multiplexing, (b) handle both directions of all connections in single

process in a non-blocking manner by using I/O multiplexing, (c) enhance

the single-process approach to have a small number of processes or threads

balancing the load between many CPU cores.

15

Background theory and related work

Because these days, in Master’s programs the main programming lan-

guage taught is Python, the ALG was implemented in Python. A more

optimal implementation could be possible using C. However, the perfor-

mance of the ALG was reasonably good, because Python can read a large

block of data in a single line of code and send the same large block of data

in another single line of code. Thus, the interpreted nature of Python will

not be a bottleneck. The hostname extraction in the Master’s thesis used

YaLe, a parser generator written in C and targeting C by the author of this

Licentiate thesis.

The characteristics of this ALG are mainly determined by its 2 processes

per connection approach. At high data rates and small connection counts,

this approach is superior to other approaches because it allows distributing

the load to many CPU cores. However, at large connection counts, this

approach uses lots of memory.

2.5.5 Shortcomings of RGW

One obvious shortcoming is that to operate in a high-volume environment,

RGW requires multiple IPv4 addresses for optimal operation. This may

be a problem as IPv4 addresses are a scarce resource. For example, if one

uses RGW in a home environment, but wishes to host high-volume servers

at home, the 1 IP address that an operator gives per device may not be

enough. In Finland, many operators offer at most 5 IP addresses, one per

device, so at most five devices can be operated without NAT. The addresses

are usually served via DHCP[17], so if one requires many IP addresses

for a single computer, some unusual configuration is required to send one

DHCP request with the real MAC address and then send several DHCP

requests with spoofed MAC addresses.

RGW also does not work with protocols where the client resolves IP

address of a host name once but expects to be able to connect to this IP

address multiple times. One such protocol where this happens is HTTP[22],

either as plaintext or operated on top of TLS[51].

Furthermore, the TTL=0 header value of DNS response sent by RGW

may not be fully supported in all environments. For example, a client could

cache the request and then immediately recycle it during the next garbage

collection event, seeing it has exceeded its TTL. If the garbage collection

events are not continuously occurring but occur e.g. once per second, this

could mean the IP address entry is cached for at most one second. Thus,

two repeated connections in a very quick succession could cause just one

16

Background theory and related work

DNS query.

Originally RGW required not only «3 IPv4 addresses for itself but also

routing configuration and two IPv4 addresses for both interfaces of the SYN

proxy that is necessary to protect the RGW from state stealing DoS attacks.

The routing changes needed could mean running the RGW in a home

environment is impossible. The author of this thesis later implemented a

SYN proxy as a layer 2 inline element on top of netmap. This SYN proxy

is fully compatible with RGW and frees up two valuable IPv4 addresses

and eliminates the need to configure routing.

The application layer gateway (ALG), as implemented for RGW, is user

space implementation where the TCP connection at both sides is termi-

nated to the ALG. Such termination of the TCP connection may use valu-

able memory resources on the RGW middlebox. A sophisticated attacker

could open lots of connections and cause memory to be quickly used up.

However, this attack on application layer requires working two-way com-

munications so it cannot be done with a spoofed address. Therefore, this

attack would be traceable, although the originator of the attack could be

a compromised computer offering no information about the person who

compromised it.

17

3. Improved SYN cookies and
nmsynproxy

In this chapter, SYN cookies and especially their implementation in a SYN

proxy are improved compared to the state of the art. The resulting compo-

nent is called nmsynproxy where nm refers to netmap[57, 58, 56], although

currently it can also run without netmap. The software is available at

https://github.com/Aalto5G/nmsynproxy.

3.1 Layer 2 SYN proxy

Both the Linux kernel and the OpenBSD implementations of SYN proxy

operate as a layer 3 network element. This type of SYN proxy requires

routing changes if used as a standalone component. However, there is

nothing that could prevent the implementation of a SYN proxy operating

on layer 2, like there is nothing preventing the implementation of layer 2

firewalls.

SYN proxy operating as a layer 2 network element gives more freedom for

efficient use of IPv4 addresses and requires less time configuring manual

routing or routing protocols. A layer 2 network element does not preclude

layer 3 operation: a layer 2 SYN proxy in front of a layer 3 router looks to

the external network like a layer 3 router, and a layer 2 SYN proxy alone

looks to the external network like an Ethernet bridge.

Layer 2 operation of course makes the SYN proxy implementation depen-

dent on the network encapsulation. For example, there could be networks

alternative to Ethernet and there could be alternative encapsulations used

in Ethernet networks. In particular, the encapsulations for Ethernet can

include:

1. DIX Ethernet / Ethernet II (the most common)

18

https://github.com/Aalto5G/nmsynproxy

Improved SYN cookies and nmsynproxy

2. Raw IEEE 802.3 (length field instead of EtherType)

3. IEEE 802.2 LLC

4. IEEE 802.2 LLC + SNAP,

but however, in practice, only Ethernet II is used for IP networks.

Also, the alternatives to Ethernet can include at least IEEE 802.11

WLAN. However, in practice, the network drivers translate the headers so

that the operating system sees them as Ethernet headers. Furthermore,

virtual network interfaces such as veth in Linux and the virtual machine

network access mechanisms also mimic Ethernet.

Thus, it is feasible to implement a layer 2 SYN proxy supporting Ethernet

with Ethernet II as the only encapsulation. All other important networks

mimic Ethernet, and Ethernet II is the only used encapsulation in practice.

The SYN proxy of this thesis is for the abovementioned reasons a layer 2

SYN proxy supporting Ethernet II frames.

The layer 2 SYN proxy only specially processes TCP packets. Packets

other than IP or IP packets other than TCP are silently passed through.

Therefore, for example ARP[44] works. However, to allow operation, the

network interfaces need to be placed to promiscuous mode.

3.2 Header checksums

Calculating the IP header checksums can take significant amounts of

CPU time especially if packets are large. However, there is a possibility

to update the checksum headers reflecting modifications to other header

fields in a manner that the header checksum will be valid if and only

if it originally was valid. Thus, for ordinary data segments, the entire

header checksum needs no validation. The SYN proxy only validates it for

“important” segments such as those opening or closing a connection, and

for other segments the fast update mechanism is used.

The checksum calculation formula is:

C 1 “ fp
ÿ

k

Vkq (3.1)

C “ „ C 1, (3.2)

where Vk is a 16-bit word of the packet and the function fpxq loops as long

19

Improved SYN cookies and nmsynproxy

as there are high-order 16 bits, and the high-order 16 bits are added to

the low-order 16 bits. The operator „ is the bitwise NOT operator. The

arithmetic is 32-bit two’s complement integer arithmetic. The checksum

calculation is detailed in RFC1071[10].

The fast update works as follows:

C 1
1 “ „ C1 (3.3)

C 1
2 “ fpC 1

1̀ „ F1 ̀ F2q (3.4)

C2 “ „ C 1
2 (3.5)

where the function fpxq is defined in the way explained previously, C1 is

the old checksum, C2 is the new checksum, F1 is the old 16-bit header field

value (aligned on a 16-bit boundary) and the F2 is the new 16-bit header

field value.

An example: if C1 = 0x752F (hexadecimal number), then C 1
1 = 0x8AD0.

If an aligned 32-bit field is changed from 10.1.2.3 (two words 0x0A01 and

0x0203) to 192.0.2.2 (two words 0xC000 and 0x0202), then we calculate:

C 1
2a “ fp0x8AD0̀ „ 0x0A01 ̀ 0xC000q (3.6)

C 1
2a “ fp0x8AD0 ̀ 0xF5FE ̀ 0xC000q (3.7)

C 1
2a “ fp0x240CEq (3.8)

C 1
2a “ 0x40D0 (3.9)

C 1
2b “ fp0x40D0̀ „ 0x0203 ̀ 0x0202q (3.10)

C 1
2b “ fp0x40D0 ̀ 0xFDFC ̀ 0x0202q (3.11)

C 1
2b “ fp0x140CEq (3.12)

C 1
2b “ 0x40CF (3.13)

C2 “ „ C 1
2b (3.14)

C2 “ 0xBF30 (3.15)

The same formula works for any device updating TCP and also IP check-

sums. However, in practice only network address translators and firewalls

update an already calculated TCP checksum. However, IP checksums need

to be updated by routers that decrement the time-to-live header field.

The idea of the fast update is very similar to that of [35, 55] although the

exact details of the equations can differ in their implementation but not in

their results.

20

Improved SYN cookies and nmsynproxy

For unaligned 16-bit values, the two aligned 16-bit values that contain

the unaligned value are enterred into the formula. 32-bit values and 64-bit

values are broken to 16-bit chunks. 8-bit values are treated as 16-bit values

with the other 8 bits set from the header. Thus, every 8-bit, 16-bit, 32-bit

and 64-bit value, either aligned or unaligned, can be handled.

3.3 Hybrid SYN cookies

Some SYN cookies embed TCP settings and cryptographic information to

TCP initial sequence number. This has the advantage that the 32-bit long

initial sequence number must always be echoed by the client. Therefore,

by merely using the initial sequence number, the SYN cookies do not rely

on options that may not be supported by the TCP stack of the remote client.

However, the initial sequence number has only 32 bits of space for settings

and cryptography.

Other SYN cookies may embed the information to the TCP timestamp.

This kind of approach has the drawback that not all TCP stacks support

TCP timestamps. Thus, the 32-bit timestamp may not be properly echoed,

and therefore, important information is lost.

In this thesis, hybrid SYN cookies are used. The word “hybrid” means

making use of at least two options or features. In this case, both the TCP

timestamp and the TCP initial sequence number are used for cryptographic

data and TCP settings.

The scheme works as follows: there are two lists for window scaling and

two lists for maximum segment size. The main list for window scaling can

be for example (0, 2, 4, 7) that encodes to 2 bits and the additional list can

be for example (0, 1, 3, 5, 6, 8, 9, 10) that encodes to 3 bits. Then, if the

remote client has a window scaling value of 5, the main value is 4 that is

encoded to two bits and the additional value is 5 that is encoded to three

bits. When the SYN+ACK response is constructed, the main value 4 is

encoded to the TCP initial sequence number and the additional value 5 is

encoded to the TCP timestamp.

If the remote client supports TCP timestamps, the maximum value of

the two possible TCP window scaling values is used. In this case, the main

value was 4 and the additional value was 5. Thus, window scaling value of

5 would be correctly selected.

If on the other hand the remote client does not support TCP timestamps,

the only information there is about the window scaling is the main value

21

Improved SYN cookies and nmsynproxy

4. Thus, the TCP connection works but not in an optimal manner as the

SYN proxy thinks window scaling is 4 but in reality window scaling value

5 could be used for even better performance.

The present SYN cookie implementation also contains an additional

measure for proper validation of initial sequence numbers. The sequence

number of the remote endpoint is included to the hashed data. Thus, it

is possible to verify that the remote endpoint did not change its initial

sequence number. It is also possible to distinguish between zero window

probes and keepalive packets belonging to a connection where packet loss

occurred and thus the client saw a zero window that did not go away. This

distinguishing is important because some TCP stacks send zero window

probes and others send keepalive packets1.

Also, this inclusion of the other endpoint initial sequence number allows

quick port reuse. Quick port reuse means an old connection is closed and

remains in the TIME_WAIT state, and then a new connection is opened

with both endpoints using the same port number. The other endpoint may

increase its initial sequence number value slowly, so the new increased ini-

tial sequence number can be a valid value for the old connection. Therefore,

the ACK packet for which the SYN cookie is verified matches the existing

state, and thus, it is treated as belonging to the existing connection in

the TIME_WAIT state. By encoding the initial sequence number to the

SYN cookie, even slightly changed other endpoint initial sequence number

should result in major changes to the local SYN cookie that is used as the

local initial sequence number.

3.4 Hybrid SYN proxy

Some SYN proxies always rely on SYN cookies. An example of such as

SYN proxy is the Linux kernel netfilter SYN proxy module. However, SYN

cookies have limited resolution for TCP settings, so for example window

scaling value or maximum segment size can be chosen suboptimally. Thus,

for best possible performance, SYN cookies should not be used.

Some other SYN proxies always rely on SYN cache. The SYN cache is

a table of small data structures optimized for opening new connections.

Only the information that needs to be stored in this stage is stored. When

a connection is fully opened, the small SYN cache entry is promoted to

a large main connection table entry. In practice, this promotion involves

1https://www.spinics.net/lists/netfilter/msg57946.html

22

https://www.spinics.net/lists/netfilter/msg57946.html

Improved SYN cookies and nmsynproxy

freeing the small data block and allocating a new large data block. A

benefit is that memory is saved when under a DoS attack. A drawback is

that each connection requires two allocations: a small one initially and

a large one later, thus increasing overheads. An example of such a SYN

proxy is the OpenBSD packet filter (PF) SYN proxy feature.

In the SYN proxy of this thesis, hybrid use of SYN cache and SYN

cookies is implemented. The SYN cache has a maximum size. When a new

connection attempt arrives, it is put to SYN cache but its initial sequence

number at the same time is a SYN cookie. If the client fully confirms

its intention to open the connection, SYN cache is first consulted and if

the data is not available in the SYN cache, SYN cookies are used as the

fallback mechanism. If the SYN cache overflows, a new connection attempt

overwrites the oldest attempt still in the cache.

As a matter of fact, it is very rare in the present implementation to rely

on SYN cookies. A connection setup time is usually about 0.2 seconds if it is

ever going to succeed. This setup time is mainly governed by speed of light

latency. At maximum 40Gbps wire speed using 64 byte packets, i.e. at 59.92

million packets per second, 11.984 million SYN packets are seen between

SYN and ACK. So, less than 12 million states need to be maintained in

the SYN cache. At 300 bytes per entry (slightly overestimated), about

3.35 gigabytes of memory is required for the SYN cache. A server having

40Gbps network interface card surely has more memory than that.

3.5 Fragment handling strategy

The SYN proxy cleverly avoids handling fragmented IP packets. For IPv4,

the design choice was made that the first fragment needs to be at least

60 bytes long (60 bytes being the maximum TCP header size). In theory,

IPv4 specification does not explicitly forbid segments smaller than this,

and IPv4 specification only requires minimum MTU of 68 bytes (maximal

header size being 60 bytes and minimal payload being 8 bytes). In practice,

it is rare to see such small MTUs. For IPv6, the first fragment needs to

have the entire header chain, a requirement set by RFC7112[24].

An endpoint host reassembles IPv4 fragments based on source IP address,

destination IP address, protocol number and packet identifier. Thus, an

attacker cannot spoof the protocol number field. If a single fragment claims

the protocol to be UDP, a subsequent fragment cannot overwrite it to be

TCP.

23

Improved SYN cookies and nmsynproxy

All fragments except the first fragments are quickly passed through the

SYN proxy. Non-TCP first fragments are also quickly passed through. For

IPv6, first fragments not having the entire header chain[24] and fragment

offset values between 1–511 (inclusive) are forbidden, as are packets where

the end of a maximum sized TCP header would be at least 512 bytes within

the fragmentable part.

These rules ensure that the first fragment always has complete informa-

tion about the TCP header, so that subsequent fragments cannot overwrite

it.

Note that if some or all of the subsequent fragments are passed through

quickly, and the first fragment contains something that causes it to be

dropped, the endpoint hosts never see the full packet.

This fragment handling strategy is not perfect. For example, if a FIN

segment contains data and is fragmented at the same time, the length of

the data cannot be known (nowhere in the IP or TCP header is the full

length of the packet specified; the IP length is the length of the fragment,

not the length of the whole packet). Thus, the end offset can be incorrectly

calculated. However, most TCP implementations use path MTU discovery,

which means they send only packets with the don’t fragment (DF) bit on.

Therefore, having a FIN segment that is both fragmented and contains

data in addition to the FIN is extremely rare. Also, the same problem

can occur for ordinary data segments, if they are fragmented. If a RST

packet is sent after such an ordinary data segment, the SYN proxy may not

accept it as RST sequence number verification is more strict than normal

packet sequence number verification because RST packets do not contain a

secondary acknowledgement number, only the primary sequence number,

thus having less numbers to verify.

3.6 State machine

Fig. 3.1 shows the state machine of the SYN proxy. In this figure, DL refers

to downlink (from Internet to protected network) and UL refers to uplink

(vice versa). S refers to SYN, SA refers to SYN+ACK, F refers to FIN, A

refers to ACK and FA refers to FIN+ACK acknowledging a previous FIN

packet. Note that FIN segments always have the ACK bit set, but F refers

to a FIN that does not acknowledge a previous FIN packet whereas FA

refers to a FIN that acknowledges a previous FIN packet.

The state machine in the figure is missing one state, RESETED. It has

24

Improved SYN cookies and nmsynproxy

Figure 3.1. State machine for life cycle of SYN proxied connections.

a timeout of 45 seconds and upon reception of a valid RST packet this

state is selected. The validity of RST packets is verified such that its

sequence number must be the expected sequence number plus or minus at

most three. This makes the RST handing secure against blind in-window

attacks[49].

This state machine is not the same as in RFC793[48], because the

RFC793 state machine is an endpoint state machine and this state machine

is a middle-point state machine. This state machine was carefully con-

structed based on visualizing how a middle-point state machine between

two RFC793 state machines should operate. This state machine is original

work: for example, the OpenBSD’s packet filter (PF) state machine has the

state split into two, src.state and dst.state. In this state machine, some

of the states may be simultaneously set which are denoted with the plus

sign, so this state machine has some similarity to the PF state machine

where the state is split into two. Also, Linux netfilter system has a state

machine which contains the states NONE, SYN_SENT, SYN_RECV, ES-

TABLISHED, FIN_WAIT, CLOSE_WAIT, LAST_ACK, TIME_WAIT and

CLOSE, so it is not at all similar to this state machine.

In addition to the state machine, there is strict sequence number han-

dling for TCP packets. Sequence numbers are allowed between these two

values:

25

Improved SYN cookies and nmsynproxy

• last sent sequence number minus maximum seen window,

• what other side has acknowledged plus current window.

These limits were not invented by the author of this thesis. Instead, credit

is given to Guido van Rooij[61].

These limits should be understood in the circular sense. For example,

3221225472 is smaller than 1 in the circular sense (mod 232) because the

circular path backwards from 1 to 3221225472 is shorter than the circular

path forwards from 1 to 3221225472.

3.7 Improved hash limiting

SYN cookies are not without their drawbacks. One rarely considered

drawback is that SYN cookies allow line rate responses to SYN packets.

Therefore, if an attacker uses a massive botnet as DDoS source to send

a flood of SYN packets to a SYN proxy, claiming to be from IP address

192.0.2.20, the SYN proxy will happily respond to every one of the SYN

packets. Thus, the SYN proxy will effectively flood the 192.0.2.20 host

in the 192.0.2.0/24 network with a SYN+ACK flood. Therefore, the SYN

proxy can be used as a reflector in a DDoS attack.

To prevent the reflector use of SYN proxy, a hash limiting strategy can be

used. The Linux netfilter system has a hashlimit module which does this.

However, it uses dynamic memory allocation and does not add a token back

to the hash bucket whenever a connection is successful, so it will rate-limit

connections even if every connection succeeds.

In this thesis, a custom hash limiter has been implemented. It is a

hash table of e.g. 131072 buckets. Each bucket contains e.g. 2000 tokens

initially and is replenished at a rate of e.g. 400 tokens each second up

to the maximum of e.g. 2000 tokens. Whenever a SYN+ACK response

to a SYN packet is sent, one token is taken from the hash bucket of the

target /24 network (the network size is configurable; for IPv6 it is /64 and

configurable too). The hash function used is SipHash[4]. Whenever an

ACK packet successfully establishes a connection, one token is added back

to the hash bucket, which is a crucial feature where this hash limiter

differs from the Linux netfilter hash limiter.

The timers to add back tokens to the bucket are batched. Each timer

updates a batch of e.g. 16384 adjacent buckets, which takes approximately

26

Improved SYN cookies and nmsynproxy

20 microseconds. The timer firing intervals are evenly distributed, so a

second timer does not expire immediately after the first timer expires.

As the buckets are adjacent, the cache behavior of the timer function

is well-defined and easily predictable. For a hash table size of 131072

buckets, eight such timers are used. Having one global timer would be

approximately 160 microseconds, which some might consider as too high

packet processing delay.

Note that because there are 16777216 /24 networks but only 131072 token

buckets in the hash table, some networks are aliased to other networks.

Which networks are aliases are however impossible to be predicted by the

attacker due to use of SipHash with a secret seed.

3.8 Installation instructions

Currently, nmsynproxy uses the pptk git submodule and stirmake as

the build system. The build system stirmake in turn uses the abce git

submodule. To install stirmake:

git clone https://github.com/Aalto5G/stirmakeê

cd stirmakeê

git submodule initê

git submodule updateê

cd stircê

makeê

sh install.shê.

These instructions install stirmake to „/.local where the binaries should

be executable on modern Linux distributions and where manual pages

should be viewable. If install.sh complains about the directory „/.local,

then you must create this directory with mkdir and re-run install.sh. At

this point, it may also be necessary to re-log-in on the Linux machine (for

graphical sessions just reopening a terminal may not be enough) so that

the local binary directory will be in path.

To build nmsynproxy without netmap support:

git clone https://github.com/Aalto5G/nmsynproxyê

cd nmsynproxyê

git submodule initê

git submodule updateê

smkaê.

27

Improved SYN cookies and nmsynproxy

To build it with netmap support, create the file opts.smk in the nmsynproxy

directory with these lines:

@subfileê

@strictê

ê

$WITH_NETMAP = @trueê

$NETMAP_INCDIR = "/home/yourname/netmap/sys"ê,

where netmap from https://github.com/luigirizzo/netmap has been cloned

to /home/yourname/netmap. Then re-run smka.

28

4. Application layer network address
translation

In this chapter, AL-NAT is proposed as a NAT traversal mechanism for

protocols mainly based on HTTP[22] and TLS[51], although it is shown

that the recently standardized transport protocol called QUIC[29] is also

capable to operate with AL-NAT. As a prototype of AL-NAT, a component

ldpairwall has been released at https://github.com/Aalto5G/ldpairwall. The

name is “airwall” as opposed to “firewall”, because the component is a

prototype of AL-NAT without any kind of security policy.

4.1 Technical overview

4.1.1 Technical details

Whenever AL-NAT middlebox receives a connection attempt, it first SYN

proxies the connection using either SYN cookies, SYN cache or making

hybrid use of both. When the client has verified its true intention to

fully open the connection, the AL-NAT middlebox sends an ACK window

update packet but does not open the other half of the connection. Thus, the

connection is not yet open at the server but the client sees it fully open.

AL-NAT works only for protocols where the client begins the exchange

of messages without needing any data from the server. Such protocols

include HTTP and TLS at least.

Whenever the client sends data for the semi-open connection, the mid-

dlebox buffers and acknowledges the data. As an alternative, it may only

buffer without acknowledging the data. The middlebox attempts to detect

the protocol automatically and to find the host name of the server within

the data. HTTP/1.1 requires users to send host name in the Host: header,

and TLS supports server name indication (SNI)[19]. In practice, all web

browers support SNI and some popular web sites require the client to send

29

https://github.com/Aalto5G/ldpairwall

Application layer network address translation

proxyprotected
host

remote
host

SYN

SYN+ACK
window=0

ACK

SYN

SYN+ACK

ACK
ACK window
update

a)

ACK window
update

data

data (re-TX)data

proxyprotected
host

remote
host

SYN

SYN+ACK
window=0

ACK

SYN

SYN+ACK

ACK
ACK window
update

b)

ACK window
update

data

data

ACK

Figure 4.1. Establishment of AL-NAT connection in (a) the standard variant and (b) the
alternative variant.

30

Application layer network address translation

Figure 4.2. State machine for life cycle of AL-NAT connections.

the SNI; without an SNI, a TLS connection to any of these popular web

sites is not possible.

When the middlebox has detected the host name of the server, it knows

which private IP address to forward the connection to. In the standard

variant, a SYN / SYN+ACK / ACK exchange is done and all acknowledged

client data is sent with possible retransmissions if some packets are lost.

Furthermore, the remote client is sent another ACK window update, this

time with real data from the true server. In the alternative variant, the

ACK window update frame is sent without acknowledging the initial client

packets, causing the remote client to retransmit all of its initial data.

After the connection has been fully established at each end, the connec-

tion is handled like any SYN proxied connection is handled: NAT is per-

formed, sequence and acknowledgement number modification is performed

and window may be adjusted based on what window scaling difference the

true server and the middlebox had.

4.1.2 State machine

The state machine of AL-NAT is heavily based on the state machine of

SYN proxy, as described in Section 3.6. Most of the state machine is shown

in Fig. 4.2 with the exception of special RESETED state which is caused

by seeing a valid RST packet with valid sequence number. The reasoning

for the RESETED state missing from the diagram is that it would be

impossible to draw it in a non-overlapping manner, as every state has a

31

Application layer network address translation

Lost Response
SYN by client client retransmits
SYN+ACK to client client retransmits SYN
ACK response to SYN+ACK by client client sends 0-window probe
First ACK window update to client client sends 0-window probe
Data segment during detection client timer
SYN to server by middlebox client timer (see text)
SYN+ACK to middlebox client timer (see text)
ACK response to SYN+ACK to server server timer
Second ACK window update to client non-fatal, merely an update

Table 4.1. Packet loss handling in AL-NAT.

transition to the RESETED state.

The timeout of each state is configurable and different. For example, the

timeout in ESTABLISHED state is one day, the RESETED state has 45

second timeout and the TIME_WAIT has a timeout of 2 minutes. The state

CLOSED is a special state that occupies no memory and lacks a timeout.

RFC7857[43] suggests a simpler rudimentary state machine that is valid

only for middleboxes that do not track and verify TCP sequence numbers.

In the present AL-NAT implementation, there is full sequence number

handling, so the RFC7857 state machine is not applicable.

4.1.3 Packet loss and retransmissions

The packet loss handling of AL-NAT is summarized in Table 4.1. The

first two types of packet loss (SYN by client, SYN+ACK to client) are

handled by client retransmitting SYN due to a timer. In AL-NAT, the

SYN+ACK response to ACK creates a zero window. If the ACK sent by the

client as a response to SYN+ACK or the response to the ACK (the ACK

window update packet) is lost, the client sends timed zero-window probes

or keepalive packets depending on the TCP stack variant the client is

using. The AL-NAT proxy detects these packets and can treat the window

update or zero window probe as the packet that opens the SYN proxied

connection and retransmits the first ACK window update. If any initial

data packet sent by client is lost, the client does not see an ACK response

and retransmits the data using a timer. Purposefully, the last inital data

packet that caused the protocol and server hostname to be detected is not

acknowledged before the other half of the connection is established. Thus,

if SYN to server by middlebox or SYN+ACK to middlebox by server is

lost, the client retries sending the data segment that caused protocol and

hostname to be detected, which causes the AL-NAT middlebox to re-send

32

Application layer network address translation

SYN to server. If ACK response to SYN+ACK to protected server is lost,

the protected server retries sending SYN+ACK. Furthermore, the last

packet of the initial exchange, the second ACK window update to client, is

merely an update the loss of which is not fatal.

4.2 Protocol analysis

4.2.1 TCP

TCP[48] is the protocol for which AL-NAT was originally intended. It is not

an easy task to implement AL-NAT for TCP, however. Firstly, one needs a

functioning SYN proxy codebase. This requires one to solve all corner cases

of SYN proxy, including guessing a suitable window scaling and handling

the eventual case where the server uses a different window scale value

than what the SYN proxy chose. One also needs to have a strategy for loss

of various types of packets. The mere loss of one packet should never cause

the connection establishment process to stall.

Additionally, at least the TCP stack in Linux has the property that if it

has not received an ACK packet for data it sent a second ago, it goes to a

retransmit code path that only retransmits the first TCP segment. Thus,

if one types:

GET / HTTP/1.1ê (immediately)

Host: server.comê (second press 1 s later)

ê (third press 1 s later than second press),

the Linux kernel sends first the GET line, and when the second line

is completely typed, chances are 1 second has already elapsed. Thus,

the Linux kernel has already entered the retransmit code path where

it retransmits only the first TCP segment, waiting for an ACK. If the

SYN proxy never acknowledges this first segment, instead waiting for the

segment containing the host name, the connection stalls.

Thus, at least for Linux, if one desires that a slow human user entering

the HTTP request manually to netcat should work, the SYN proxy must

ACK and buffer the initial data segments received from the client instead

of waiting for the host name segment to arrive and letting the client

retransmit them to the protected host which would acknowledge them.

33

Application layer network address translation

4.2.2 QUIC

QUIC[29] is a next-generation transport layer protocol designed to even-

tually replace TCP. QUIC is layered on top of UDP[45]. Unlike TCP/IP

stacks that operate in kernel space, the QUIC has been designed to run

entirely in user space with only the UDP part working in kernel space. It

incorporates several enhancements that are missing from TCP:

• The connection establishment packet is large, thus increasing the costs

of connection establishment and making DoS attacks less feasible

• The possibility of DoS attacks has been taken into account right from

the start, making it possible for endpoints to send a challenge before

trusting the other party

• All connections are encrypted[60]

• Connection and encryption setup requires less round trips than in TCP

because encryption is deeply embedded into the protocol

• It supports several multiplexed streams for a single connection

• Head-of-line blocking is not a problem: blocking for one stream does not

delay other streams

• Connections can be smoothly migrated to new IP addresses for example

for a mobile phone that has simultaneous 5G and WLAN connectivity.

Some features are similar to TCP:

• Each stream is an ordered reliable byte stream akin to a TCP connection,

although streams may be unidirectional instead of being bidirectional

• Flow control ensures a fast sender will not overload a slow receiver

• Congestion control[28] similar to that of TCP[1] is being used to avoid

overloading the network

34

Application layer network address translation

The important feature of QUIC is that the initial handshake message

is similar to a TLS ClientHello message in that it contains the server

name indication. Thus, AL-NAT is possible for every protocol operating

on top of QUIC assuming the server name indication in set properly and

that the server name indication packet is not encrypted. There is some

progress towards encrypting even the server name[52] (still in Internet

Draft stage so the QUIC RFC does not have this), so if this encryption is

widely adopted, the encryption keys for the server name (that may differ

from the encryption keys of the actual data) need to be shared with the AL-

NAT middlebox. Since QUIC was a rapidly moving target when ldpairwall

was implemented, QUIC support has not yet been implemented in the

AL-NAT reference implementation, ldpairwall.

4.2.3 Application-layer protocols

An application-layer protocol must be defined such that the client sends

the host name of the server before the server needs to send any data for

AL-NAT to work. Not all application-layer protocols have this property.

4.2.3.1 HTTP

The first versions of HTTP, HTTP/0.9 and HTTP/1.0[7] did not support

multihosting properly. In these versions, the client only connected to

the server’s IP address, and specified the path. It was assumed that the

server’s host name was implicitly known due to knowing which server IP

address the client connected to.

However, when HTTP was being deployed, IPv4 address exhaustion

was already forecasted to happen in the near future. Thus, HTTP/1.1[22]

was defined, which makes the Host: header mandatory. The client has to

specify the host name of the server always. By making the Host: header

mandatory, multihosting, i.e. running many sites on the same IP address,

became possible.

All major web browsers today support at least HTTP/1.1[22] if not

HTTP/2[6]. However, HTTP/2, although defined also for plaintext con-

nections, is in practice only supported in its encrypted form running over

TLS. Therefore, an AL-NAT middlebox needs not support HTTP/2 sepa-

rately. It needs to support only HTTP/1.1, with HTTP/2 support being

handled by TLS support.

The newest version of HTTP, HTTP/3[9], is defined to work on top of

QUIC[29]. As a protocol running on top of QUIC[29], it is also AL-NAT

35

Application layer network address translation

compatible, although upcoming encrypted server name can provide chal-

lenges.

4.2.3.2 TLS

TLS[51] is a cryptography protocol running on top of TCP, that is in turn

used for various different protocols such as mail protocols and HTTPS. A

noteworthy exception is SSH[65, 66, 67, 68] which is a cryptographically

protected protocol having its own cryptography layer.

TLS as a cryptography protocol sounds like it should not allow AL-NAT

operation. After all, if TLS encrypts everything, the AL-NAT middlebox

cannot operate properly by detecting the host name of the server. However,

in TLS, one can run many sites having different certificates on the same

server. Thus, the client must send the ClientHello message containing the

unencrypted host name before expecting the server to send its ServerHello

message with the certificate. Because the client must send the ClientHello

before expecting the server to send any data, TLS has the property that

AL-NAT works properly.

However, one caveat is that the server name indication (SNI) field was

not initially defined for first versions of TLS. It is a later addition[19]. For

an application to support SNI, the application has to tell the host name of

the server to the TLS stack. Typically, before SNI support, applications

were written as follows:

1. Resolve host name into IP address

2. Connect to the IP address

3. Create a TLS context

4. Give the connected socket to the TLS stack for the TLS context

The only location where this type of code handles the host name of the

server is the name resolution. Afterwards, the code does not provide the

host name to the TLS stack because the TLS stack did not originally need

to know it. However, for SNI to work, the code needs to be structured like

this:

1. Resolve host name into IP address

36

Application layer network address translation

2. Connect to the IP address

3. Create a TLS context

4. Give the host name of the server to the TLS stack for the TLS context

5. Give the connected socket to the TLS stack for the TLS context

The additional step is what makes SNI work.

SNI is supported by all major web browsers. There are web sites such

as the site of the large Finnish newspaper Helsingin Sanomat that do not

work for browsers not having SNI support. The reason Helsingin Sanomat

can do this is that all major web browsers support SNI.

4.2.3.3 SSH

SSH[65, 66, 67, 68] is a protocol where the client and the server send

the version greeting simultaneously. Thus, by slightly altering the idea

of the protocol, one could wait in a middlebox for the client to send its

version greeting before choosing which server to hand off the connection to.

Unfortunately, the version greeting has no indication of the host name the

client wants to connect.

Fortunately, SSH is a protocol that is almost always implemented by

using the OpenSSH implementation which is extremely configurable. For

example, the OpenSSH implementation supports “jump hosts”. One can

have a host running SSH server that is used for jumping to hosts behind

the server. In particular, the OpenSSH implementation also supports

“proxy command”. This proxy command allows the use of any binary

implementing a proxy protocol. Thus, by being extensible, OpenSSH

supports arbitrary proxy protocols, those already defined and also those

not defined yet.

By using the SSH “proxy command” support on the client side, it is shown

in Section 4.3 how the proxy can be implemented in the AL-NAT middlebox

in such a lightweight manner that running proxied protocol is no more

expensive than running directly supported protocols. This enables SSH to

work correctly with AL-NAT.

4.2.3.4 Mail protocols

There are three important mail protocols that could benefit from AL-NAT

when the server is in private address space behind NAT (if only the client

37

Application layer network address translation

is in private address space, then AL-NAT works just like regular NAT, and

every TCP connection works). The protocols are SMTP[31], IMAP[13] and

POP3[39].

SMTP starts by the server responding to a connection opening event

by a version greeting. Because the server is the first to communicate,

and because there is no command for the client to send the host name,

SMTP is not AL-NAT compatible. However, SMTP has the NOOP com-

mand which has an argument. So, the client could be modified to send

NOOP fqdn:smtp.example.com before seeing the server’s version greeting. This

would be a minor modification to the protocol that would allow it to be

AL-NAT compatible.

IMAP is similar to SMTP in that the server is the first party to communi-

cate. However, IMAP does not have an argument for the NOOP command,

only a tag, and some implementations may limit the tag length. Thus, it is

not as easy to modify IMAP to support AL-NAT than it is to modify SMTP

to support AL-NAT.

POP3 also has the server start communications with a version greeting,

similar to SMTP and IMAP. However, unlike SMTP and IMAP, POP3 does

not even have a NOOP command. Thus, it seems unlikely that POP3 could

be enhanced to support AL-NAT.

If SMTP, IMAP or POP3 is operated on top of TLS, they may use the SNI

of TLS. However, actually using the SNI requires that the TLS clients are

programmed in a manner that tells the hostname to the TLS stack. This

may not be the case for all client implementations.

4.3 Carrier grade TCP proxy for unsupported TCP protocols

In this section, we first discuss how carrier grade TCP proxy as a NAT

traversal mechanism can be efficiently implemented in the server-side

middlebox (this part is already in operation in ldpairwall, the reference

implementation). Then details of implementing it in the client-side middle-

box are discussed (this part has not yet been implemented in ldpairwall).

Then a new architecture for Internet is proposed that works by doing

switching between cooperative firewalls supporting AL-NAT and carrier

grade TCP proxy. Finally, a client library is presented for applications such

as OpenSSH and netcat that do not support carrier grade TCP proxy.

38

Application layer network address translation

4.3.1 Carrier grade TCP proxy in server-side middlebox

AL-NAT has been designed to not modify the TCP stream. The initial

request sent by the client is forwarded to the server after AL-NAT figures

out the private address of the server based on its hostname. However,

AL-NAT can be changed to perform certain modification operations in the

TCP stream. In this case, the client sees a different TCP byte stream than

the server.

Why would one want to modify the TCP stream? The reason is proxy

protocols. For example, HTTP CONNECT proxy protocol begins by the

client sending the following message to the proxy:

CONNECT www.example.com:80 HTTP/1.1ê

Host: www.example.com:80ê

ê,

and the proxy responding by the following response:

HTTP/1.1 200 OKê

ê.

Then after the proxy negotiation has happened between the client and

the proxy, normal protocol-dependent traffic continues. This protocol-

dependent traffic may be encrypted. In the current implementation of

HTTP CONNECT proxy protocol, the initial proxy traffic is not encrypted

(although it could be encrypted with small modifications to the codebase).

It is not hard in AL-NAT to parse the HTTP CONNECT message and at

the same time remove it from the TCP stream. It is not also hard to

inject the HTTP/1.1 200 OK to the stream towards the client. These TCP

stream modifications allow the AL-NAT middlebox to function as a carrier

grade TCP proxy. The connecting client can specify any destination for the

connection, and the AL-NAT middlebox then hands off the SYN proxied

connection to the correct private host.

An alternative to HTTP CONNECT proxy protocol would be the SOCKS

protocol that has several versions: SOCKS4, SOCKS4a and SOCKS5[32].

However, as HTTP support is anyway needed to support the most pop-

ular application-layer protocol in the Internet, using HTTP CONNECT

protocol for the proxy seems like a natural fit. Furthermore, SOCKS5

has the problem of requiring quite many round trip times for connection

establishment. In fact, there was SOCKS6 protocol being standardized to

reduce the round trip time count for connection establishment[41], but the

39

Application layer network address translation

work was stopped and the drafts have expired.

The client can for example decide to send the CONNECT message based

on domain name system query that tells it has to do an additional CON-

NECT hop. Such domain name system modifications are explained starting

from Section 4.3.2. In the case of SSH connections, it is also possible to

configure the details to use a proxy on the client side. Since SSH is most

secure when used with public and private keypair that already require

some configuration, it is not too much effort to configure details for using

proxy.

Nearly the same could obviously be achieved by having a real proxy run-

ning in the AL-NAT middlebox. However, this real proxy would terminate

its TCP connections at both sides to the middlebox. It would not be thus

a carrier grade proxy, because operating in a carrier environment could

exhaust the kernel memory available in a powerful computer.

Carrier grade TCP proxy (CG-TP) differs from a real proxy program in

that it has the same minimal memory consumption that AL-NAT has. The

connection state fits in less than a kilobyte as will be shown in Section 5.3.

In the initial state of a connection, more memory may be used temporarily

for protocol and hostname detection. The carrier grade TCP proxy only

needs to modify IP addresses, time to live header field, TCP ports, sequence

and acknowledgement numbers, window field value and checksums. The

actual data never needs any modification after the connection has been

fully established.

4.3.2 Carrier grade TCP client in client-side middlebox

A client for carrier grade TCP proxy can be implemented in the client-side

firewall middlebox. The middlebox intercepts A? DNS queries e.g. for

ssh.example.com and translates them into two parts: unmodified A? query

for ssh.example.com and modified TXT? query for _cgtp.ssh.example.com. Both

of these translated queries are sent at the same time in a pipelined manner.

The middlebox waits for both queries to return a result, positive or negative.

If the TXT? query returned a positive result, e.g. 192.0.2.2!ssh.example.com,

the client-side middlebox reserves an IP address from a special private IP

address space reserved for carrier grade TCP proxy client purposes. The

middlebox then responds to the original intercepted A? DNS query by e.g.

a response A=10.240.5.6, TTL=1. Note the TTL=1 which makes it less likely

for the client to cache the temporary address for long periods of time. It is

known some DNS implementations do not properly support TTL=0, so there-

40

Application layer network address translation

fore TTL=1 is used instead of TTL=0. The middlebox also stores a bidirectional

mapping 10.240.5.6=192.0.2.2!ssh.example.com ô ssh.example.com.

When the client computer connects to 10.240.5.6, the middlebox looks up

the 10.240.5.6=192.0.2.2!ssh.example.com ô ssh.example.com entry and per-

forms a destination NAT to 192.0.2.2 and a source NAT for the public

IP address of the middlebox. It then inserts CONNECT ssh.example.com:22

HTTP/1.1 method call into the TCP stream whenever the TCP connection is

opened.

For example, the reserved IP address space could be 10.240.0.0/12 which

contains million usable IP addresses. The client-side middlebox maintains

bidirectional mappings between IP address and host names in a least

recently used (LRU) cache. Whenever an IP address sees a TCP connection

attempt or a DNS A? query requests an already known host name bound

to its IP address, the IP address is moved to become the most recently

used. Whenever all IP addresses in the reserved space are in use, and

a modified TXT? query results in a response stating the requested server

supports carrier grade TCP proxy, the least recently used IP address is

dropped according to the LRU cache eviction policy, to be replaced by the

newly discovered address that is added to the list as the most recently

used address.

Here the 192.0.2.2!ssh.example.com is a bang path. It means the car-

rier grade TCP proxy client should connect to 192.0.2.2 and request

CONNECT ssh.example.com:22 HTTP/1.1 where 22 is the port number. For

nested firewalls, the bang path can contain more entries. For exam-

ple, 192.0.2.2!bounce.example.com!ssh.example.com means the client should

first request CONNECT bounce.example.com:22 HTTP/1.1 and only then CONNECT

ssh.example.com:22 HTTP/1.1. The first bang path entry should always be an

IP address.

It is perfectly fine for a client to support less than million addresses in

order to limit memory consumption to much below 128 megabytes. For

example, if the typical host name and bang path is at most 84 bytes (longer

host names and bang paths can be stored as separately allocated memory

blocks), the IP address is 4 bytes, a doubly linked list node is 8 bytes, and

a red-black tree node is 32 bytes, a single entry takes 128 bytes. Thus,

million entries take 128 megabytes. Most middlebox implementations are

expected to have more memory than that, but if a low-end middlebox is

extremely memory-limited, it can support e.g. only 65536 addresses that

would at most use 8 megabytes of memory.

41

Application layer network address translation

4.3.3 New Internet architecture of cooperative firewalls

By embedding a recursive DNS resolver server in the client-side middlebox,

one can implement a new architecture for Internet that is based on switch-

ing between cooperative firewalls. No client application and no server

application requires any changes for this kind of architecture. All real

servers can be run behind NAT.

The client-side middlebox is a cooperative firewall that intercepts every

TCP stream to the special reserved IP address space by inserting HTTP

CONNECT method call as the first data packet:

CONNECT www.serverexample.com:80 HTTP/1.1ê

Host: www.serverexample.com:80ê

ê,

and the server-side middlebox then intercepts every TCP connection, thus

detecting the CONNECT method call, and strips the CONNECT method

call away so that the real server software sees only the protocol traffic.

This system allows every TCP-based protocol to work seamlessly, no

matter whether the protocol works with regular AL-NAT or not. QUIC[29]

based protocols would be handled directly by QUIC support, because the

first QUIC packet sent by the client already has the server name indication.

The TCP-based switching approach would for example solve all MTU

issues because every part of the connection would use TCP as its sole

protocol. Any kind of approach based on tunneling would end up with

MTU issues. The Internet is full of broken firewalls that do not properly

translate or even drop ICMP[46] packet too big messages. Furthermore,

tunneling would in practice need to run on top of UDP because TCP over

TCP is a terrible idea due to two layers of retransmissions that can cause

a practical collapse of connection throughput if there is heavy packet loss.

About the only drawback of this approach compared to tunneling is that

tunneling can add encryption. This kind of proxying does not support

encryption, so in practice encryption needs to be supported by the endpoint

applications. However, typically many HTTP servers and web browsers

use encryption.

4.3.4 Carrier grade TCP client directly in client computer

By modifying endpoint applications, it is possible to add support to CG-TP.

There are three approaches in which applications may be modified:

42

Application layer network address translation

1. Change the code of the application to use the new interfaces and recom-

pile

2. Create a preloadable library that replaces some socket and name resolu-

tion functions

3. Offer a proxy command, a separate binary speaking a proxy proto-

col (works only for programs that support proxy commands such as

OpenSSH)

The new programming interface for approach (1) is a function that creates

a connected socket and returns it. It replaces (a) name resolution function,

(b) socket creation function socket() and (c) socket connection function

connect(). The interface is simply int socket_ex(char *, uint16_t). Using

the improved interface may be beneficial for applications because it not

only adds CG-TP support but also adds transparent IPv6 support.

The approach (2) or the preloadable library uses 8192 revolving addresses

in the forbidden network 0.0.0.0/8 in the range 0.0.0.0 – 0.0.31.255 as

answers to DNS queries. It replaces the gethostbyname(), getaddrinfo(),

freeaddrinfo() and connect() functions. The replaced functions store the

bang path into a 8192-entry table and picks a revolving address from the

range 0.0.0.0 – 0.0.31.255 which denotes the index to the table. Then,

if the program wants to connect() to an IPv4 address within the range

0.0.0.0 – 0.0.31.255, the bang path is obtained from the 8192-entry table

and CG-TP connection establishment is performed instead. Currently, the

preloadable library is not thread-safe, so it is intended mainly for simple

single-threaded applications like netcat.

The proxy command of approach (3) is a very simple two-file-descriptor

non-blocking I/O multiplexer. It first creates the CG-TP socket, and then

starts to copy data between standard input and the socket write side, and

between the socket read side and standard output. It has been tested with

OpenSSH and found to work perfectly.

All three approaches can be obtained from the git repository at

https://github.com/Aalto5G/cghcpcli.

43

Application layer network address translation

4.4 Installation instructions

Currently, ldpairwall uses the pptk git submodule and stirmake as the

build system. The build system stirmake in turn uses the abce git submod-

ule. To install stirmake:

git clone https://github.com/Aalto5G/stirmakeê

cd stirmakeê

git submodule initê

git submodule updateê

cd stircê

makeê

sh install.shê.

These instructions install stirmake to „/.local where the binaries should

be executable on modern Linux distributions and where manual pages

should be viewable. If install.sh complains about the directory „/.local,

then you must create this directory with mkdir and re-run install.sh. At

this point, it may also be necessary to re-log-in on the Linux machine (for

graphical sessions just reopening a terminal may not be enough) so that

the local binary directory will be in path.

To build ldpairwall without netmap support:

git clone https://github.com/Aalto5G/ldpairwallê

cd ldpairwallê

git submodule initê

git submodule updateê

smkaê.

To build it with netmap support, create the file opts.smk in the ldpairwall

directory with these lines:

@subfileê

@strictê

ê

$WITH_NETMAP = @trueê

$NETMAP_INCDIR = "/home/yourname/netmap/sys"ê,

where netmap from https://github.com/luigirizzo/netmap has been cloned

to /home/yourname/netmap. Then re-run smka.

44

5. Theoretical analysis

In this chapter, several properties of the solutions are theoretically ana-

lyzed. For the SYN proxy, its strength of cryptography and its memory

usage characteristics are only theoretically analyzed. There are no IETF

requirements in RFCs for SYN proxies. In fact, IETF in most cases strongly

opposes any kinds of middleboxes and this probably includes SYN proxies

too. So, it is unlikely that IETF will ever put forth comprehensive require-

ments for SYN proxies. In contrast, NAT is a widely deployed solution, and

although the preference of IETF would be for NAT to not exist and IPv6

to be deployed everywhere, they have had to realize the facts and define

behavioral requirements for NAT. In this chapter, it is analyzed which of

those behavioral requirements are met in ldpairwall, in addition to the

memory usage of ldpairwall.

5.1 nmsynproxy cryptography strength

There is a default nmsynproxy configuration that uses 2 bits for window

scale option, 2 bits for maximum segment size, 1 bit for SACK supported

bit and 1 bit for revolving secret index, thus leaving 26 bits out of 32

for cryptographical protection. Therefore, one in 67108864 random ACK

segments not belonging to an existing connection can cause opening of a

new connection.

The user can configure the SYN proxy differently, however. There is a

check that at least 19 bits of security must be enabled. 19 bits of security

means one in 524288 random ACK segments not belonging to an existing

connection can open a new connection.

One could ask whether the revolving secret index is necessary. It is, due

to the following reasoning: without the secret index, the cryptographical

protection would have 27 bits. Thus, one in 134217728 cookies actually

45

Theoretical analysis

passes the incorrect secret check as well. If secrets are revolved once

per 32 seconds, and average connection setup time is 0.2 seconds, one

in 160 cookies is first checked against the incorrect secret. Thus, one

in 134217728̈160 or one in 21474836480 cookies sets up the connection

with incorrect TCP options. At a rate of 1000 new connections per second

(plausible for a highly loaded server), a server experiences one faulty

connection per approximately 249 days. However, by encoding the secret

index, the strength of cryptographic protection is not reduced, so it is clear

that it should be encoded too. One might protest that with the secret index

there is only 26 bits for cryptographic protection instead of 27, but then

only one secret is used for checking, which gives an extra bit of security.

This level of security can be improved by using timestamp option in

addition to the initial sequence number. The default timestamp option

has 3 bits of maximum segment size information, 3 bits of window scale

information, 5 bits of timestamp information and 1 bit of current secret

index, leaving the rest for cryptographical protection. These settings leave

20 bits for cryptographical protection, meaning one in 1048576 segments

passes this additional cryptographical check.

5.2 nmsynproxy memory usage

The SYN proxy only specially handles TCP connections. UDP and ICMP

packets are silently passed through. IP fragments have a clever handling

explained in Section 3.5 that requires no allocation of memory. Thus, the

only way TCP SYN proxy can be attacked in a memory use attack is to

simply create lots of TCP connections.

The size of SYN proxy TCP connection block is 280 bytes. Therefore, a

gigabyte of memory can support over 3.8 million connections. Note that by

SYN flooding, one cannot exhaust this memory because the SYN cache of

the SYN proxy is limited in size, so only a small fraction of this memory

can be consumed by the SYN cache. When the SYN cache is overflown,

connections resort to using SYN cookies, thus meaning a connection state

entry is created only after the remote client has truly demonstrated its

willingness to fully open a connection.

46

Theoretical analysis

5.3 ldpairwall memory usage

The per-connection memory usage of ldpairwall depends on the protocol

and on the status of a connection. The following data structures are of

interest:

• TCP connection block

• UDP connection block

• ICMP connection block

• Protocol detection context

The TCP connection block size is 304 bytes. Thus, a gigabyte of memory

can support over 3.5 million TCP connections. It is therefore unlikely that

ldpairwall will ever run out of memory.

UDP and ICMP connections require lighterweight tracking, so their size

is only 144 bytes. Therefore, for example a far larger number of QUIC

connections can be supported than TCP connections. Also, QUIC can have

a number of streams within a single connection, so the need to establish

multiple simultaneous connections to a QUIC server is nonexistent.

The most plausible way to exhaust ldpairwall memory is to create lots of

connections that are stuck in the protocol and hostname detection stage.

A connection in this stage requires an additional 5016 bytes of memory.

This stage has 240 second timeout, but the timer is reset every time a

segment belonging to the connection is seen. Thus, a skilled attacker could

retain lots of connections in the protocol and hostname detection stage.

This could be improved by never resetting the timer in the protocol and

hostname detection stage so that the 240 second timeout is absolute.

Furthermore, by sending lots of IP fragments, the IP fragmentation

code paths of ldpairwall could in theory be attacked. However, there is a

global configurable reassembly memory limit of 32 megabytes (default), so

a memory exhaustion DoS attack is not very efficient. Therefore, the main

way the IP fragmentation code paths are vulnerable is their algorithmic

complexity (the FragmentSmack attack successfully exploits this[40]).

47

Theoretical analysis

5.4 ldpairwall requirements analysis

There are several requirements for NAT in various RFCs. In this section,

we analyse whether they are met in ldpairwall.

5.4.1 RFC4787

RFC4787[3] contains NAT behavioral requirements for unicast UDP[45].

5.4.1.1 REQ 1

“A NAT MUST have an “Endpoint-Independent Mapping” behavior.”

This requirement is fully met, provided that there are unused ports

available. The NAT in ldpairwall has been designed with a port manager

that supports endpoint-independent mapping behavior.

5.4.1.2 REQ 2

“It is RECOMMENDED that a NAT have an “IP address pooling” behavior

of “Paired”. Note that this requirement is not applicable to NATs that do

not support IP address pooling.”

This requirement is not applicable, as ldpairwall uses only one external

IP address.

5.4.1.3 REQ 3

“A NAT MUST NOT have a “Port assignment” behavior of “Port overload-

ing”.

a) If the host’s source port was in the range 0-1023, it is RECOM-

MENDED the NAT’s source port be in the same range. If the host’s

source port was in the range 1024-65535, it is RECOMMENDED that the

NAT’s source port be in that range.”

This requirement is met as long as there are unused ports available.

Once all ports of the NAT are already in use, only then it starts to do port

overloading. The additional recommendation is not met, as the NAT imple-

mentation considers low reserved ports unavailable for general purpose

use.

5.4.1.4 REQ 4

“It is RECOMMENDED that a NAT have a “Port parity preservation”

behavior of “Yes”.”

This recommendation is not met, except in cases where port preservation

is possible due to the same port being available externally. Even ports

48

Theoretical analysis

may be mapped to odd ports and odd ports may be mapped to even ports

if the same port is not available externally. This recommendation would

not be terribly hard to support, yet it is only a recommendation and not

requirement.

5.4.1.5 REQ 5

“A NAT UDP mapping timer MUST NOT expire in less than two minutes,

unless REQ-5a applies.

a) For specific destination ports in the well-known port range (ports 0-

1023), a NAT MAY have shorter UDP mapping timers that are specific

to the IANA-registered application running over that specific destination

port.

b) The value of the NAT UDP mapping timer MAY be configurable.

c) A default value of five minutes or more for the NAT UDP mapping

timer is RECOMMENDED.”

The recommended 5 minute timer is used, so this requirement is met.

5.4.1.6 REQ 6

“The NAT mapping Refresh Direction MUST have a “NAT Outbound re-

fresh behavior” of “True”.

a) The NAT mapping Refresh Direction MAY have a “NAT Inbound

refresh behavior” of “True”.”

The requirement is met, as both outbound and inbound refresh behavior

is True. Traffic in either direction keeps the UDP mapping alive.

5.4.1.7 REQ 7

“A NAT device whose external IP interface can be configured dynamically

MUST either (1) automatically ensure that its internal network uses IP

addresses that do not conflict with its external network, or (2) be able to

translate and forward traffic between all internal nodes and all external

nodes whose IP addresses numerically conflict with the internal network.”

This is not applicable, as the external IP interface is configured statically.

5.4.1.8 REQ 8

“If application transparency is most important, it is RECOMMENDED

that a NAT have an “Endpoint-Independent Filtering” behavior. If a more

stringent filtering behavior is most important, it is RECOMMENDED that

a NAT have an “Address-Dependent Filtering” behavior.

a) The filtering behavior MAY be an option configurable by the adminis-

trator of the NAT.”

49

Theoretical analysis

This requirement is met, as the filtering behavior is endpoint-

independent. A port is opened when first outgoing packets are sent, and

later any arrival of packets to this port creates automatically a connection

state entry. However, a small caveat is that when the NAT does not have

enough free ports available, it may not be possible to determine which

private IP address and port should receive the incoming packets from

unknown destination. Thus, the NAT gracefully falls back to address and

port-dependent filtering if there are not enough free ports.

5.4.1.9 REQ 9

“A NAT MUST support “Hairpinning”.

a) A NAT Hairpinning behavior MUST be “External source IP address

and port”. ”

Hairpinning is supported, so packets can be sent to other clients behind

the NAT using the external IP address and port of the other client. The

external IP-port pair is used for this purpose.

5.4.1.10 REQ 10

“To eliminate interference with UNSAF NAT traversal mechanisms and

allow integrity protection of UDP communications, NAT ALGs for UDP-

based protocols SHOULD be turned off. Future standards track specifica-

tions that define ALGs can update this to recommend the defaults for the

ALGs that they define.

a) If a NAT includes ALGs, it is RECOMMENDED that the NAT allow

the NAT administrator to enable or disable each ALG separately.”

The current ldpairwall implementation does not have any ALGs. How-

ever, it is worth mentioning that IETF seems to have a rather restricted

view of what ALGs can be. Not all ALGs modify traffic, and thus, the

justification to allow integrity protection of UDP communications is not a

true justification here.

5.4.1.11 REQ 11

(All section references in this requirement refer to the RFC.)

“A NAT MUST have deterministic behavior, i.e., it MUST NOT change

the NAT translation (Section 4) or the Filtering (Section 5) Behavior at

any point in time, or under any particular conditions.”

Here IETF has clearly taken a wrong decision in the requirement. It

is a worse crime to disallow communications due to lack of resources

than it is to allow communications with changed semantics. As long as

50

Theoretical analysis

there are enough resources such as open ports, the behavior of ldpairwall

is deterministic. However, if ldpairwall runs out of open ports, it may

simply have to change its behavior because the only other option would

be disallowing all communications, which could lead to a denial of service

attack.

5.4.1.12 REQ 12

“Receipt of any sort of ICMP message MUST NOT terminate the NAT

mapping.

a) The NAT’s default configuration SHOULD NOT filter ICMP messages

based on their source IP address.

b) It is RECOMMENDED that a NAT support ICMP Destination Un-

reachable messages.”

This requirement is fully met. NAT mappings are only timed out, not

terminated by ICMP messages. ICMP messages are not filtered, and

destination unreachable is supported.

5.4.1.13 REQ 13

“If the packet received on an internal IP address has DF=1, the NAT MUST

send back an ICMP message “Fragmentation needed and DF set” to the

host, as described in [RFC0792].

a) If the packet has DF=0, the NAT MUST fragment the packet and

SHOULD send the fragments in order.”

This is not supported, mainly because ldpairwall is intended for use cases

where the uplink and downlink interfaces are Ethernet and thus have the

same MTU.

5.4.1.14 REQ 14

“A NAT MUST support receiving in-order and out-of-order fragments, so it

MUST have “Received Fragment Out of Order” behavior.

a) A NAT’s out-of-order fragment processing mechanism MUST be de-

signed so that fragmentation-based DoS attacks do not compromise the

NAT’s ability to process in-order and unfragmented IP packets.”

IP fragmentation is fully supported, including out-of-order fragments.

The additional requirement (a) may not be fully met, but then again most

important operating systems (Windows, Linux) were vulnerable to the

IP fragmentation DoS attack called FragmentSmack[40] that the author

found, too. The reason for (a) not being fully met is that FragmentSmack

was discovered after ldpairwall was created.

51

Theoretical analysis

5.4.2 RFC5382

RFC5382[26] contains NAT behavioral requirements for TCP.

5.4.2.1 REQ 1

“A NAT MUST have an “Endpoint-Independent Mapping” behavior for

TCP.”

This requirement is fully met, provided that there are unused ports

available. The NAT in ldpairwall has been designed with a port manager

that supports endpoint-independent mapping behavior.

5.4.2.2 REQ 2

“A NAT MUST support all valid sequences of TCP packets (defined in

[RFC0793]) for connections initiated both internally as well as externally

when the connection is permitted by the NAT.

a) In addition to handling the TCP 3-way handshake mode of connection

initiation, A NAT MUST handle the TCP simultaneous- open mode of

connection initiation.”

The state machine prefers security over functionality in all cases, so

some extraordinarily rare corner cases may not be handled properly. The

simultaneous opening of TCP connections has not been tested. This RFC

however was written before TCP split handshake was known, and the

proper way to handle TCP split handshake can very well be to deny it.

5.4.2.3 REQ 3

“If application transparency is most important, it is RECOMMENDED that

a NAT have an “Endpoint-Independent Filtering” behavior for TCP. If a

more stringent filtering behavior is most important, it is RECOMMENDED

that a NAT have an “Address-Dependent Filtering” behavior.

a) The filtering behavior MAY be an option configurable by the adminis-

trator of the NAT.

b) The filtering behavior for TCP MAY be independent of the filtering

behavior for UDP.”

This requirement is met, as the filtering behavior is endpoint-

independent. A port is opened when first outgoing packets are sent, and

later any arrival of SYN packet to this port creates automatically a con-

nection state entry. However, a small caveat is that when the NAT does

not have enough free ports available, it may not be possible to determine

which private IP address and port should receive the incoming packets

52

Theoretical analysis

from unknown destination. Thus, the NAT gracefully falls back to address

and port-dependent filtering if there are not enough free ports.

5.4.2.4 REQ 4

“A NAT MUST NOT respond to an unsolicited inbound SYN packet for

at least 6 seconds after the packet is received. If during this interval

the NAT receives and translates an outbound SYN for the connection the

NAT MUST silently drop the original unsolicited inbound SYN packet.

Otherwise, the NAT SHOULD send an ICMP Port Unreachable error (Type

3, Code 3) for the original SYN, unless REQ-4a applies.

a) The NAT MUST silently drop the original SYN packet if sending a

response violates the security policy of the NAT.”

This is related to TCP simultaneous open, and thus the intention is to

not support it.

5.4.2.5 REQ 5

“If a NAT cannot determine whether the endpoints of a TCP connection are

active, it MAY abandon the session if it has been idle for some time. In such

cases, the value of the “established connection idle-timeout” MUST NOT

be less than 2 hours 4 minutes. The value of the “transitory connection

idle-timeout” MUST NOT be less than 4 minutes.

a) The value of the NAT idle-timeouts MAY be configurable.”

This is supported, and the timeout is exactly 1 day for established con-

nections. and 2 hours 4 minutes if one side has closed the connection.

5.4.2.6 REQ 6

“If a NAT includes ALGs that affect TCP, it is RECOMMENDED that all of

those ALGs (except for FTP [RFC0959]) be disabled by default.”

There are no ALGs in ldpairwall. It is here worth mentioning too that

IETF seems to have a rather restricted view of what ALGs can be. Not all

ALGs modify traffic.

5.4.2.7 REQ 7

“A NAT MUST NOT have a “Port assignment” behavior of “Port overloading”

for TCP.”

This requirement is met as long as there are unused ports available.

Once all ports of the NAT are already in use, only then it starts to do port

overloading.

53

Theoretical analysis

5.4.2.8 REQ 8

“A NAT MUST support “hairpinning” for TCP.

a) A NAT’s hairpinning behavior MUST be of type “External source IP

address and port”.”

This requirement is fully met, as hairpinning is supported, and external

source IP address and port are used for it.

5.4.2.9 REQ 9

“If a NAT translates TCP, it SHOULD translate ICMP Destination Un-

reachable (Type 3) messages.”

This is a very important requirement, and ICMP packets are indeed

translated.

5.4.2.10 REQ 10

“Receipt of any sort of ICMP message MUST NOT terminate the NAT

mapping or TCP connection for which the ICMP was generated.”

Only RST packets or FIN packets can terminate the NAT mapping, so

this requirement is fully met.

5.4.3 RFC5508

RFC5508[59] contains NAT behavioral requirements for ICMP[46].

5.4.3.1 REQ 1

“Unless explicitly overridden by local policy, a NAT device MUST permit

ICMP Queries and their associated responses, when the Query is initiated

from a private host to the external hosts.

a) NAT mapping of ICMP Query Identifiers SHOULD be external-host

independent.”

ICMP queries are indeed supported, and mappings are endpoint-

independent.

5.4.3.2 REQ 2

“An ICMP Query session timer MUST NOT expire in less than 60 seconds.

a) It is RECOMMENDED that the ICMP Query session timer be made

configurable.”

ICMP query session expiration timer is configurable with default being

60 seconds.

54

Theoretical analysis

5.4.3.3 REQ 3

“When an ICMP Error packet is received, if the ICMP checksum fails to

validate, the NAT SHOULD silently drop the ICMP Error packet.

a) If the IP checksum of the embedded packet fails to validate, the NAT

SHOULD silently drop the Error packet; and

b) If the embedded packet includes IP options, the NAT device MUST

traverse past the IP options to locate the start of the transport header for

the embedded packet; and

c) The NAT device SHOULD NOT validate the transport checksum of the

embedded packet within an ICMP Error message, even when it is possible

to do so; and

d) If the ICMP Error payload contains ICMP extensions [ICMP-EXT],

the NAT device MUST exclude the optional zero- padding and the ICMP

extensions when evaluating transport checksum for the embedded packet.”

A different strategy is used instead. The checksum is translated in a

manner that it is valid if and only if it was valid. Thus, invalid ICMP

checksums remain invalid and the endpoint host drops the packet.

5.4.3.4 REQ 4

“If a NAT device receives an ICMP Error packet from an external realm,

and the NAT device does not have an active mapping for the embedded

payload, the NAT SHOULD silently drop the ICMP Error packet. If the

NAT has active mapping for the embedded payload, then the NAT MUST

do the following prior to forwarding the packet, unless explicitly overridden

by local policy:

a) Revert the IP and transport headers of the embedded IP packet to

their original form, using the matching mapping; and

b) Leave the ICMP Error type and code unchanged; and

c) Modify the destination IP address of the outer IP header to be the

same as the source IP address of the embedded packet after translation.”

This modification is done based on the mapping.

5.4.3.5 REQ 5

“If a NAT device receives an ICMP Error packet from the private realm,

and the NAT does not have an active mapping for the embedded payload,

the NAT SHOULD silently drop the ICMP Error packet. If the NAT has

active mapping for the embedded payload, then the NAT MUST do the

following prior to forwarding the packet, unless explicitly overridden by

local policy:

55

Theoretical analysis

a) Revert the IP and transport headers of the embedded IP packet to

their original form, using the matching mapping; and

b) Leave the ICMP Error type and code unchanged; and

c) If the NAT enforces Basic NAT function ([NAT-TRAD]), and the NAT

has active mapping for the IP address that sent the ICMP Error, translate

the source IP address of the ICMP Error packet with the public IP address

in the mapping. In all other cases, translate the source IP address of the

ICMP Error packet with its own public IP address.”

This modification is done based on the mapping.

5.4.3.6 REQ 6

“While processing an ICMP Error packet pertaining to an ICMP Query

or Query response message, a NAT device MUST NOT refresh or delete

the NAT Session that pertains to the embedded payload within the ICMP

Error packet.”

No such deletion is done in the current implementation in ldpairwall.

5.4.3.7 REQ 7

“NAT devices enforcing Basic NAT [NAT-TRAD] MUST support the traver-

sal of hairpinned ICMP Query sessions. All NAT devices (i.e., Basic NAT

as well as NAPT devices) MUST support the traversal of hairpinned ICMP

Error messages:

a) When forwarding a hairpinned ICMP Error message, the NAT device

MUST translate the destination IP address of the outer IP header to

be same as the source IP address of the embedded IP packet after the

translation. ”

Hairpinning should work for ICMP packets too, as hairpinning has been

implemented in a protocol independent manner.

5.4.3.8 REQ 8

“When a NAT device is unable to establish a NAT Session for a new

transport-layer (TCP, UDP, ICMP, etc.) flow due to resource constraints

or administrative restrictions, the NAT device SHOULD send an ICMP

destination unreachable message, with a code of 13 (Communication ad-

ministratively prohibited) to the sender, and drop the original packet.”

Extremely heavy care has been taken to make it implausible to exhaust

the resources of a NAT. For example, the same port may be reused if free

ports are not available. However, the communication administratively

prohibited error message is not currently sent.

56

Theoretical analysis

5.4.3.9 REQ 9

“A NAT device MAY implement a policy control that prevents ICMP mes-

sages being generated toward certain interface(s). Implementation of such

a policy control overrides the MUSTs and SHOULDs in REQ-10.”

Such policy control has not been implemented.

5.4.3.10 REQ 10

(All section references in this requirement refer to the RFC.)

“Unless overridden by REQ-9’s policy, a NAT device needs to support

ICMP messages as below, some conforming to Section 4.3 of [RFC1812]

and some superseding the requirements of Section 4.3 of [RFC1812]:

a. MUST support:

1. Destination Unreachable Message, as described in Section 7.1 of this

document.

2. Time Exceeded Message, as described in Section 7.2 of this document.

3. Echo Request/Reply Messages, as described in REQ-1.

b. MAY support:

1. Redirect Message, as described in Section 4.3.3.2 of [RFC1812].

2. Timestamp and Timestamp Reply Messages, as described in Section

4.3.3.8 of [RFC1812].

3. Source Route Options, as described in Section 7.3 of this document.

4. Address Mask Request/Reply Message, as described in Section 7.4 of

this document.

5. Parameter Problem Message, as described in Section 7.5 of this docu-

ment.

6. Router Advertisement and Solicitations, as described in Section 7.6 of

this document.

c. SHOULD NOT support:

1. Source Quench Message, as described in Section 4.3.3.3 of [RFC1812].

2. Information Request/reply, as described in Section 4.3.3.7 of

[RFC1812].

In addition, a NAT device is RECOMMENDED to conform to the follow-

ing implementation considerations:

d. DS Field Usage, as described in Section 7.7 of this document.

e. When Not to Send ICMP Errors, as described in Section 4.3.2.7 of

[RFC1812].

f. Rate Limiting, as described in Section 4.3.2.8 of [RFC1812].”

Various different kinds of ICMP messages are supported. In particular,

57

Theoretical analysis

all of the MUST requirements are met.

5.4.3.11 REQ 11

(All section references in this requirement refer to the RFC.)

“A NAT MAY drop or appropriately handle Non-QueryError ICMP mes-

sages. The semantics of Non-QueryError ICMP messages is defined in

Section 2.”

This is not a requirement at all because according to it, a NAT MAY do

anything. Thus, the non-requirement can be claimed to be met.

58

6. Testing

In this chapter, we discuss how the correctness of SYN cookie implemen-

tation in nmsynproxy was established. The performance of nmsynproxy

is determined. The performance of protocol and hostname detection in ld-

pairwall is established. This protocol and hostname detection in ldpairwall

along with the single-threaded nature of ldpairwall is the largest difference

between ldpairwall and nmsynproxy performance related aspects. The

required buffer size of AL-NAT is determined from analysis of real network

traffic. Furthermore, it is shown that AL-NAT traversal works for both

plain unmodified HTTP and TLS and when augmented with CG-TP also

for SSH.

6.1 nmsynproxy correctness tests

The TCP SYN proxy nmsynproxy has comprehensive correctness tests that

are automatically run by the build system. All of the tests are written in

the C programming language, crafting the packets manually, and each test

has an IPv4 and IPv6 version. The first test is a 3-way handshake + 4-way

FIN test that tests setting up and closing a connection in the non SYN

proxied direction. Then RST packets are tested for established connections

in the uplink and downlink direction. Furthermore, a closed port test

is performed in the non SYN proxied direction. Then it is tested that

retransmissions of various packets belonging to a connection are correctly

handled.

The remaining tests are tests of the SYN proxied direction. A normal

SYN proxy handshake is tested. Then retransmissions of various packets

belonging to the handshake are tested to be handled properly. This testing

includes tests of both keepalive and zero window probe packets for a

connection having zero window (some TCP stacks send keepalives even

59

Testing

though standards-compliant stacks should send zero window probes). After

this, closed port handling in the SYN proxied direction is tested. This is

a test that the Linux kernel SYN proxy in the netfilter system would not

pass.

Then there are data transfer and RST tests for SYN proxied connections.

Data transfer is tested both for uplink direction, downlink direction and

both directions. RST packets are tested in both uplink and downlink

directions.

The SYN proxy passes all of these correctness tests currently, and this

has been the case for a long amount of time. The SYN proxy codebase is

extremely stable and modifications are currently performed very rarely.

It is also worth mentioning that the SYN proxy was used for everything

in Master’s thesis of Maria Riaz[53]. It contained a very thorough analysis

of the custom application layer gateway (ALG). Every single connection

that went past the ALG went through the SYN proxy as well. The very

careful testing of the ALG did not reveal a single bug in the SYN proxy,

although one minor code improvement to SYN proxy was made (resending

SYN packet in a timed manner) and one helpful documentation update

was made to ensure Linux kernel does not drop packets that are supposed

to go through the SYN proxy.

6.2 nmsynproxy performance tests

There are several performance tests that can be executed. One is the

performance of worker-only packet processing. In this test, the packets to

be processed are generated internally within the computer program, and

they are not sent anywhere. The test measures pure packet processing

overheads without including any packet I/O overheads. The performance

of this test is illustrated in Table 6.1 on various different CPU models.

This worker-only test uses a non-ending sequence of two full-sized pack-

ets and one small minimum-sized packet. Thus, it is representative of

large file transfers. Average packet size is approximately kilobyte, so even

the slowest of the CPUs should be able to saturate a 40 Gbps network

interface card using a single thread, if packet processing overhead is the

major overhead.

However, it turns out that packet I/O is an extremely large overhead

that cannot be ignored. This overhead is particularly large in virtualized

environments. Thus, on the dual E5-2630L v2 machine, it took three

60

Testing

test CPU performance
worker-only i5-8250U 5.29947 MPPS
worker-only dual E5-2630L v2 5.99728 MPPS
worker-only dual E5-2630 0 5.31238 MPPS

Table 6.1. Performance of worker-only packet processing on different machines.

protocol time
SSL 0.21 µs

HTTP, host header as first 0.33 µs
HTTP, host header as last 1.18 µs

Table 6.2. Performance of protocol and hostname detection. The performance was mea-
sured on an Intel Core i5-8250U laptop.

threads to saturate an Intel 40Gbps network card, even though with no

packet I/O overheads single thread could saturate such a link. The CPU is

capable of executing 24 simultaneous threads of execution (although half

of those threads are merely simultaneous multithreads and not physical

CPU cores). Thus, the saturation of the 40Gbps network card does not

even need to fully use all available CPU resources.

This level of performance (three threads to saturate a 40Gbps network

card) cannot unfortunately be matched currently in virtualized environ-

ments. The netmap driver for veth network interface is designed for cases

where both ends of the veth driver run a netmap application. Standard un-

modified veth driver works with only one thread in the case of netmap, and

the performance of that single thread is not equivalent to a performance of

a single thread in the case of a physical supported network interface card

such as the Intel 40Gbps one.

6.3 Protocol and hostname detection performance

To test the performance of protocol and hostname detection, two HTTP

requests and one TLS ClientHello message were created. The TLS Clien-

tHello message was 194 bytes long. The HTTP requests were 648 bytes

long, with a 27 bytes long URL. Then protocol and hostname detection was

performed a million times in a loop to estimate the cost of processing one

packet. The setup consist of only part of ldpairwall code in a unit test, so

that for example packet processing performance of previous section was

not included.

The results are shown in Table 6.2. It can be observed that protocol

detection for most typical cases happens in a fraction of a microsecond, so

more than million hostnames can be detected per second. This is not a

61

Testing

major limitation of performance in ldpairwall. Practically all HTTP clients

send the host header as the first, but it was also tested what happens if the

host header is the last header. As expected, performance drops in a major

way, but not so much that the drop would make ldpairwall vulnerable to a

protocol and hostname detection algorithmic complexity attack.

This protocol and hostname detection is one of the two major performance-

related differences between ldpairwall and nmsynproxy. The other is that

ldpairwall as a quickly written prototype was created to be single-threaded.

6.4 HTTP and TLS header size study

The AL-NAT middlebox needs to store a certain amount of first data

packets for each TCP connection in the proxied state. In practice, this

memory required cannot be allocated fully dynamically, because otherwise

it opens a door for a denial of service attack where the first data packets

are deliberately made very large. Partially dynamic allocation with a cap

on the memory size is of course possible.

Thus, some investigation is needed to determine how many bytes of

initial data is required for determination of the hostname. The current

implementation in ldpairwall stores at most 4096 bytes of initial data.

This is the same as the maximum supported header block size in nginx, a

popular web server implementation, that uses the system page size as the

header size limit (on most important systems, page size is 4096 bytes).

In practice, all noteworthy implementations of HTTP client send the Host:

header as the first header after the request line. Thus, even if the total

HTTP headers may be longer than 4096 bytes, the Host: header should

occur immediately after the request line. Some implementations of HTTP

limit the request URI to a small number of bytes. For example, Internet

Explorer supports at most 2083 characters[36].

Therefore, 4096 bytes for initial data may be enough. To understand the

distribution of end offset of host name and the initial message size, informa-

tion from 942 TLS ClientHello messages and 467 plaintext HTTP requests

was obtained. For the ClientHello messages, a mixture of browsers (Edge,

Chrome, Firefox) was used.

The results in Fig. 6.1 and Fig. 6.2 clearly illustrate that caching only

4096 bytes of data is enough. The whole header block can be nearly 4

kilobytes (there was one such outlier), but even then, the host header value

ended within the first kilobyte.

62

Testing

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1000 2000 3000 4000 5000

O
c
c
u
rr

e
n
c
e
 c

o
u
n
t

Header size

(a) HTTP request block size

 0

 50

 100

 150

 200

 250

 0 200 400 600 800 1000

O
c
c
u
rr

e
n
c
e
 c

o
u
n
t

End offset of host header

(b) Host header end position

Figure 6.1. A histogram of (a) HTTP request block total size and (b) position of the host
header end. One outlier request was 4013 bytes, but even then the host header
ended within the firts kilobyte.

63

Testing

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

O
c
c
u
rr

e
n
c
e
 c

o
u
n
t

ClientHello size

(a) TLS ClientHello message size

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180

O
c
c
u
rr

e
n
c
e
 c

o
u
n
t

End offset of SNI

(b) Position of server name indication end

Figure 6.2. A histogram of (a) TLS ClientHello message size and (b) position of server
name indication end. To create these ClientHello messages, a mixture of three
web browsers was used. The browsers were Firefox, Chrome and Edge. Google
Chrome improves security by padding the ClientHello message to make its
size invariant.

64

Testing

6.5 AL-NAT traversal tests

6.5.1 Testing environment

The following configuration changes were performed as the superuser

(root):

mkdir -p /etc/netns/ns1ê

echo "nameserver 10.150.2.100" > /etc/netns/ns1/resolv.confê

ip link add veth0 type veth peer name veth1ê

ip link add veth2 type veth peer name veth3ê

ifconfig veth0 upê

ifconfig veth1 upê

ifconfig veth2 upê

ifconfig veth3 upê

ethtool -K veth0 rx off tx off tso off gso off gro off lro offê

ethtool -K veth1 rx off tx off tso off gso off gro off lro offê

ethtool -K veth2 rx off tx off tso off gso off gro off lro offê

ethtool -K veth3 rx off tx off tso off gso off gro off lro offê

ip netns add ns1ê

ip netns add ns2ê

ip link set veth0 netns ns1ê

ip link set veth3 netns ns2ê

ip netns exec ns1 ip addr add 10.150.2.1/24 dev veth0ê

ip netns exec ns2 ip addr add 10.150.1.101/24 dev veth3ê

ip netns exec ns1 ip link set veth0 upê

ip netns exec ns2 ip link set veth3 upê

ip netns exec ns1 ip link set lo upê

ip netns exec ns2 ip link set lo upê

ip netns exec ns2 ip route add default via 10.150.1.1ê.

The ldpairwall was started in the main namespace:

./airwall/ldpairwall veth2 veth1ê.

All of the subsequent tests assume the configuration changes have been

performed and that ldpairwall is up and running.

6.5.2 Outgoing NAT connection

The functionality of outgoing connections through ldpairwall was verified

by using netcat. The commands were:

65

Testing

ip netns exec ns1 nc -v -v -v -l -p 1234ê

ip netns exec ns2 nc -v -v -v 10.150.2.1 1234ê.

The connection to 10.150.2.1:1234 succeeded and typing anything into

one netcat instance appeared in the other netcat instance. It was verified

the connection was working bidirectionally.

6.5.3 AL-NAT unencrypted connection

The functionality of incoming connections through ldpairwall was verified

by using netcat, too. The commands were:

ip netns exec ns2 nc -v -v -v -l -p 1234ê

ip netns exec ns1 nc -v -v -v 10.150.2.100 1234ê.

In this case, the client saw its connection half open immediately, but the

listening server did not immediately see an open connection. However, the

following text was typed to the client:

GET / HTTP/1.1ê

Host: www1.example.comê

ê,

and now the request typed to the client appeared on the server side, and

the connection worked bidirectionally afterwards.

6.5.4 AL-NAT encrypted connection

The previous section tested HTTP protocol connection support. However,

AL-NAT supports TLS too and it must also be verified to work. Setting

up TLS requires generating a keypair. Executing the following commands

tests TLS:

openssl req -x509 -newkey rsa:2048 -keyout k.pem -out c.pem -nodesê

ip netns exec ns2 openssl s_server -key k.pem -cert c.pem -accept 1234ê

alias nns1='ip netns exec ns1'ê

nns1 openssl s_client -servername www1.example.com 10.150.2.100:1234ê.

Then when typing anything into the client, it arrives at the server side. It

can also be tested that by omitting the servername option, the connection

does not work.

66

Testing

6.5.5 HTTP CONNECT proxy

The integrated HTTP CONNECT proxy was verified by using the com-

mands:

ip netns exec ns2 nc -v -v -v -l -p 1234ê

ip netns exec ns1 nc -v -v -v 10.150.2.100 4321ê.

In this case as well, the client saw its connection half open immediately,

but the server did not see any incoming connection yet. Note the server’s

port number is different. A HTTP CONNECT request was written to the

client with the correct port number:

CONNECT www1.example.com:1234 HTTP/1.1ê

ê,

and now the client showed HTTP/1.1 200 OK response. After this, the server

saw an incoming connection with no data in it. It was verified that data

transfer worked bidirectionally after the connection was established. In

particular, none of the CONNECT or OK lines were present on the server

side.

6.5.6 Port control protocol, TCP

The opening of ports for TCP[48] using port control protocol[64] (PCP) was

tested:

ip netns exec ns2 ./airwall/pcpclient tcp 40000 40000 86400ê

ip netns exec ns2 nc -v -v -v -l -p 40000ê

ip netns exec ns1 nc -v -v -v 10.150.2.100 40000ê.

Even though the connection was an incoming connection, data transfer

worked bidirectionally due to the port control protocol client command.

6.5.7 Port control protocol, UDP

The opening of ports for UDP[45] using port control protocol[64] (PCP) was

tested:

ip netns exec ns2 ./airwall/pcpclient udp 40000 40000 86400ê

ip netns exec ns2 nc -v -v -v -u -l -p 40000ê

ip netns exec ns1 nc -v -v -v -u 10.150.2.100 40000ê.

In this case, data transfer was first tested from the remote client to the pro-

tected server. Data transfer in this direction worked. The other direction

was tested then and it worked too.

67

7. Conclusions

It is often said that TCP/IP needs replacing. IPv4 according to this claim

needs to be replaced by IPv6 because of address space exhaustion, and

TCP needs to be replaced by QUIC because of vulnerability to DoS attacks.

In this thesis, it was shown that this is not necessarily the case.

Clever improvements to NAT traversal allow IPv4 to have more life as the

de facto network layer protocol in the Internet. Although IPv6 transition

is in progress, it is slow. It is best to let it happen at its natural pace, while

at the same time deploying advanced NAT traversal solutions that work

even in the server side.

The NAT traversal solution presented in this thesis is AL-NAT which

works transparently for HTTP and TLS-based protocols using SNI such

as HTTPS and QUIC. It also works for other protocols if the client-side

middlebox or program is modified to support the HTTP CONNECT proxy

protocol. For example, OpenSSH has support for a ProxyCommand config-

uration option, meaning no code changes are required for adding support

to new proxy protocols.

TCP DoS attacks such as SYN flood are easy, but so is protecting against

them. SYN proxy can be deployed transparently as a layer 2 inline element,

requiring no routing changes in the network where it is placed. The

implemented SYN proxy has good multithreaded performance due to being

based on netmap.

Due to the improvements implemented in this thesis, TCP/IP has a very

bright future as the basis of the Internet. It does not need to be replaced

with QUIC/IPv6.

68

Conclusions

7.1 Future work

There is some work that was not included in this thesis but could be used

to enhance the results of the thesis.

The ldpairwall uses a hand-coded parser which is very hard to under-

stand and to maintain. Later, after ldpairwall implementation, a parser-

lexer generator named YaLe was implemented by the author. It greatly

reduces the workload of creating working parsers for various text-based or

binary protocols. The ldpairwall should be changed to use YaLe instead of

a hand-coded parser.

When ldpairwall was implemented, the author worked at Nokia that

did not look upon implementation of an open source firewall favorably. It

was argued that such an open source firewall could compete with Nokia

that as a big company has research and development related to firewalls

and sales of 3rd party firewalls. Thus, the author had to implement the

ideas as a component that is not a firewall. The component chosen was an

airwall, a new type of NAT middlebox which has been specifically designed

to allow all connections as seamlessly as possible, by favoring connectivity

over security. Now that the author no longer works at Nokia, ldpairwall

could be enhanced to incorporate a security policy. However, this would be

a large project that would add lots of code.

Recently QUIC was defined into an RFC. Thus, ldpairwall should be

changed to support the UDP-based protocol QUIC. Doing it would require

firstly adding UDP AL-NAT support and then adding QUIC support.

Furthermore, ldpairwall was designed as quickly as possible and thus

multithreading was not taken into account. Therefore, ldpairwall is single-

threaded and all locations that access global data lack locking. This is

not expected to be as large problem as for nmsynproxy that is a SYN

flood protection component that has to be fast given its job. In contrast,

ldpairwall will be run as a NAT middlebox.

The hash tables of ldpairwall and nmsynproxy should be modified to use

MurMurHash3 as the hash function and red-black trees[27] as collision

resolution strategy. Currently attacker-created collisions are avoided by

using SipHash as the hash function with a secret seed unknown to the

attacker. The current collision resolution strategy is a linked list. This

current approach has the drawback that SipHash is slow to calculate.

Using MurMurHash3 and red-black trees would be faster.

The ldpairwall was implemented before FragmentSmack[40] was discov-

69

Conclusions

ered. Thus, the IP fragment reassembly methods of ldpairwall may be

vulnerable to FragmentSmack. They should be rewritten to be based on

red-black trees.

70

Bibliography

[1] M. Allman, V. Paxson, and W. Stevens. RFC2581: TCP congestion control.
RFC 2581, RFC Editor, 1999. URL http://www.rfc-editor.org/rfc/rfc2581.txt.

[2] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Com-
puter Networks, 54(15):2787–2805, 2010.

[3] F. Audet and C. Jennings. RFC4787: Network address translation (NAT)
behavioral requirements for unicast UDP. RFC 4787, RFC Editor, 2007.
URL http://www.rfc-editor.org/rfc/rfc4787.txt.

[4] J.-P. Aumasson and D. J. Bernstein. SipHash: a fast short-input PRF. In
International Conference on Cryptology in India, pages 489–508. Springer,
2012.

[5] J.-P. Aumasson, D. J. Bernstein, and M. Boßlet. Hash-flooding DoS reloaded:
attacks and defenses. In 29th Chaos Communications Congress, 2012.

[6] M. Belshe, R. Peon, and M. Thomson. RFC7540: Hypertext transfer protocol
version 2 (HTTP/2). RFC 7540, RFC Editor, 2015. URL http://www.rfc-editor.

org/rfc/rfc7540.txt.

[7] T. Berners-Lee, R. Fielding, and H. Frystyk. RFC1945: Hypertext trans-
fer protocol — HTTP/1.0. RFC 1945, RFC Editor, 1996. URL http:

//www.rfc-editor.org/rfc/rfc1945.txt.

[8] D. J. Bernstein. SYN cookies. Personal website, 2013 (last updated),
26.6.2021 (retrieved). URL https://cr.yp.to/syncookies.html.

[9] M. Bishop. HTTP/3. RFC 9114, RFC Editor, 2022. URL http://www.rfc-editor.

org/rfc/rfc9114.txt.

[10] R. Braden, D. Borman, and C. Partridge. RFC1071: Computing the Internet
checksum. RFC 1071, RFC Editor, 1988. URL http://www.rfc-editor.org/rfc/

rfc1071.txt.

[11] S. Bradner and A. Mankin. RFC1550: IP: Next generation (IPng) white
paper solicitation. RFC 1550, RFC Editor, 1993. URL http://www.rfc-editor.

org/rfc/rfc1550.txt.

[12] S. Cheshire and M. Krochmal. RFC6886: NAT port mapping protocol (NAT-
PMP). RFC 6886, RFC Editor, 2013. URL http://www.rfc-editor.org/rfc/

rfc6886.txt.

71

http://www.rfc-editor.org/rfc/rfc2581.txt
http://www.rfc-editor.org/rfc/rfc4787.txt
http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.rfc-editor.org/rfc/rfc1945.txt
http://www.rfc-editor.org/rfc/rfc1945.txt
https://cr.yp.to/syncookies.html
http://www.rfc-editor.org/rfc/rfc9114.txt
http://www.rfc-editor.org/rfc/rfc9114.txt
http://www.rfc-editor.org/rfc/rfc1071.txt
http://www.rfc-editor.org/rfc/rfc1071.txt
http://www.rfc-editor.org/rfc/rfc1550.txt
http://www.rfc-editor.org/rfc/rfc1550.txt
http://www.rfc-editor.org/rfc/rfc6886.txt
http://www.rfc-editor.org/rfc/rfc6886.txt

Bibliography

[13] M. Crispin. RFC3501: Internet message access protocol — version 4rev1.
RFC 3501, RFC Editor, 2003. URL http://www.rfc-editor.org/rfc/rfc3501.txt.

[14] V. T. Dang, T. T. Huong, N. H. Thanh, P. N. Nam, N. N. Thanh, and A. Mar-
shall. SDN-based SYN proxy — a solution to enhance performance of attack
mitigation under TCP SYN flood. The Computer Journal, 62(4):518–534,
2018.

[15] S. Deering and R. Hinden. RFC1883: Internet protocol, version 6 (IPv6)
specification. RFC 1883, RFC Editor, 1995. URL http://www.rfc-editor.org/

rfc/rfc1883.txt.

[16] S. Deering and R. Hinden. RFC8200: Internet protocol, version 6 (IPv6)
specification. RFC 8200, RFC Editor, 2017. URL http://www.rfc-editor.org/

rfc/rfc8200.txt.

[17] R. Droms. RFC2131: Dynamic host configuration protocol. RFC 2131, RFC
Editor, 1997. URL http://www.rfc-editor.org/rfc/rfc2131.txt.

[18] D. Eastlake and P. Jones. RFC3174: US secure hash algorithm 1 (SHA1).
RFC 3174, RFC Editor, 2001. URL http://www.rfc-editor.org/rfc/rfc3174.txt.

[19] D. Eastlake 4rd. RFC6066: Transport layer security (TLS) extensions: Ex-
tension definitions. RFC 6066, RFC Editor, 2011. URL http://www.rfc-editor.

org/rfc/rfc6066.txt.

[20] W. Eddy. RFC4987: TCP SYN flooding attacks and common mitigations.
RFC 4987, RFC Editor, 2007. URL http://www.rfc-editor.org/rfc/rfc4987.txt.

[21] K. Egevang and P. Francis. RFC1631: The ip network address translator
(NAT). RFC 1631, RFC Editor, 1994. URL http://www.rfc-editor.org/rfc/

rfc1631.txt.

[22] R. Fielding and J. Reschke. RFC7230: Hypertext transfer protocol
(HTTP/1.1): Message syntax and routing. RFC 7230, RFC Editor, 2014.
URL http://www.rfc-editor.org/rfc/rfc7230.txt.

[23] V. Fuller, T. Li, J. Yu, and K. Varadhan. RFC1519: Classless inter-domain
routing (CIDR): an address assignment and aggregation strategy. RFC 1519,
RFC Editor, 1993. URL http://www.rfc-editor.org/rfc/rfc1519.txt.

[24] F. Gont, V. Manral, and R. Bonica. RFC7112: Implications of oversized IPv6
header chains. RFC 7112, RFC Editor, 2014. URL http://www.rfc-editor.org/

rfc/rfc7112.txt.

[25] B. Goode. Voice over internet protocol (VoIP). Proceedings of the IEEE, 90(9):
1495–1517, 2002.

[26] S. Guha, K. Biswas, B. Ford, S. Sivakumar, and P. Srisuresh. RFC5382:
NAT behavioral requirements for TCP. RFC 5382, RFC Editor, 2008. URL
http://www.rfc-editor.org/rfc/rfc5382.txt.

[27] L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees.
In Foundations of Computer Science, 1978., 19th Annual Symposium on,
IEEE, 1978.

72

http://www.rfc-editor.org/rfc/rfc3501.txt
http://www.rfc-editor.org/rfc/rfc1883.txt
http://www.rfc-editor.org/rfc/rfc1883.txt
http://www.rfc-editor.org/rfc/rfc8200.txt
http://www.rfc-editor.org/rfc/rfc8200.txt
http://www.rfc-editor.org/rfc/rfc2131.txt
http://www.rfc-editor.org/rfc/rfc3174.txt
http://www.rfc-editor.org/rfc/rfc6066.txt
http://www.rfc-editor.org/rfc/rfc6066.txt
http://www.rfc-editor.org/rfc/rfc4987.txt
http://www.rfc-editor.org/rfc/rfc1631.txt
http://www.rfc-editor.org/rfc/rfc1631.txt
http://www.rfc-editor.org/rfc/rfc7230.txt
http://www.rfc-editor.org/rfc/rfc1519.txt
http://www.rfc-editor.org/rfc/rfc7112.txt
http://www.rfc-editor.org/rfc/rfc7112.txt
http://www.rfc-editor.org/rfc/rfc5382.txt

Bibliography

[28] J. Iyengar and I. Swett. RFC9002: QUIC loss detection and congestion
control. RFC 9002, RFC Editor, 2021. URL http://www.rfc-editor.org/rfc/

rfc9002.txt.

[29] J. Iyengar and M. Thomson. RFC9000: QUIC: A UDP-based multiplexed and
secure transport. RFC 9000, RFC Editor, 2021. URL http://www.rfc-editor.

org/rfc/rfc9000.txt.

[30] V. Jacobson, R. Braden, and D. Borman. RFC1323: TCP extensions for high
performance. RFC 1323, RFC Editor, 1992. URL http://www.rfc-editor.org/

rfc/rfc1323.txt.

[31] J. Klensin. RFC5321: Simple mail transfer protocol. RFC 5321, RFC Editor,
2008. URL http://www.rfc-editor.org/rfc/rfc5321.txt.

[32] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. RFC1928:
SOCKS protocol version 5. RFC 1928, RFC Editor, 1996. URL http://www.

rfc-editor.org/rfc/rfc1928.txt.

[33] J. Llorente Santos. RealmGateway. Github, 2018 (last updated), 26.6.2021
(retrieved). URL https://github.com/Aalto5G/RealmGateway.

[34] J. Llorente Santos, R. Kantola, N. Beijar, and P. Leppaaho. Implementing
NAT traversal with private realm gateway. In Communications (ICC), 2013
IEEE International Conference on, 2013.

[35] T. Mallory and A. Kullberg. RFC1141: Incremental updating of the Internet
checksum. RFC 1141, RFC Editor, 1990. URL http://www.rfc-editor.org/rfc/

rfc1141.txt.

[36] Microsoft. Maximum URL length is 2,083 characters
in internet explorer, 2019 (last updated), 25.12.2019 (re-
trieved). URL https://support.microsoft.com/en-us/help/208427/

maximum-url-length-is-2-083-characters-in-internet-explorer.

[37] P. Mockapetris. RFC1034: Domain names — concepts and facilities. RFC
1034, RFC Editor, 1987. URL http://www.rfc-editor.org/rfc/rfc1034.txt.

[38] P. Mockapetris. RFC1035: Domain names — implementation and specifi-
cation. RFC 1035, RFC Editor, 1987. URL http://www.rfc-editor.org/rfc/

rfc1035.txt.

[39] J. Myers and M. Rose. RFC1939: Post office protocol — version 3. RFC 1939,
RFC Editor, 1996. URL http://www.rfc-editor.org/rfc/rfc1939.txt.

[40] T. Novelly (document writer) and J.-M. Tilli (reporter). VU#641765: Linux
kernel IP fragment re-assembly vulnerable to denial of service. Vulnerability
Note 641765, CERT, 2018. URL https://www.kb.cert.org/vuls/id/641765.

[41] V. Olteanu and D. Niculescu. SOCKS protocol version 6, historical. Internet-
Draft draft-olteanu-intarea-socks-6-11, IETF Secretariat, 2020.

[42] V. Paxson. An analysis of using reflectors for distributed denial-of-service
attacks. ACM SIGCOMM Computer Communication Review, 31(3):38–47,
2001.

73

http://www.rfc-editor.org/rfc/rfc9002.txt
http://www.rfc-editor.org/rfc/rfc9002.txt
http://www.rfc-editor.org/rfc/rfc9000.txt
http://www.rfc-editor.org/rfc/rfc9000.txt
http://www.rfc-editor.org/rfc/rfc1323.txt
http://www.rfc-editor.org/rfc/rfc1323.txt
http://www.rfc-editor.org/rfc/rfc5321.txt
http://www.rfc-editor.org/rfc/rfc1928.txt
http://www.rfc-editor.org/rfc/rfc1928.txt
https://github.com/Aalto5G/RealmGateway
http://www.rfc-editor.org/rfc/rfc1141.txt
http://www.rfc-editor.org/rfc/rfc1141.txt
https://support.microsoft.com/en-us/help/208427/maximum-url-length-is-2-083-characters-in-internet-explorer
https://support.microsoft.com/en-us/help/208427/maximum-url-length-is-2-083-characters-in-internet-explorer
http://www.rfc-editor.org/rfc/rfc1034.txt
http://www.rfc-editor.org/rfc/rfc1035.txt
http://www.rfc-editor.org/rfc/rfc1035.txt
http://www.rfc-editor.org/rfc/rfc1939.txt
https://www.kb.cert.org/vuls/id/641765

Bibliography

[43] R. Penno, S. Perreault, M. Boucadair, S. Sivakumar, and K. Naito. RFC7857:
Updates to network address translation (NAT) behavioral requirements.
RFC 7857, RFC Editor, 2016. URL http://www.rfc-editor.org/rfc/rfc7857.txt.

[44] D. C. Plummer. RFC826: An ethernet address resolution protocol — or
— converting network protocol addresses to 48.bit ethernet address for
transmission on ethernet hardware. RFC 826, RFC Editor, 1982. URL
http://www.rfc-editor.org/rfc/rfc826.txt.

[45] J. Postel. RFC768: User datagram protocol. RFC 768, RFC Editor, 1980.
URL http://www.rfc-editor.org/rfc/rfc768.txt.

[46] J. Postel. RFC792: Internet control message protocol. RFC 792, RFC Editor,
1981. URL http://www.rfc-editor.org/rfc/rfc792.txt.

[47] J. Postel. RFC791: Internet protocol. RFC 791, RFC Editor, 1981. URL
http://www.rfc-editor.org/rfc/rfc791.txt.

[48] J. Postel. RFC793: Transmission control protocol. RFC 793, RFC Editor,
1981. URL http://www.rfc-editor.org/rfc/rfc793.txt.

[49] A. Ramaiah, R. Stewart, and M. Dalal. RFC5961: Improving TCP’s ro-
bustness to blind in-window attacks. RFC 5961, RFC Editor, 2010. URL
http://www.rfc-editor.org/rfc/rfc5961.txt.

[50] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear.
RFC1918: Address allocation for private internets. RFC 1918, RFC Ed-
itor, 1996. URL http://www.rfc-editor.org/rfc/rfc1918.txt.

[51] E. Rescorla. RFC8446: The transport layer security (TLS) protocol version
1.3. RFC 8446, RFC Editor, 2018. URL http://www.rfc-editor.org/rfc/rfc8446.

txt.

[52] E. Rescorla, K. Oku, N. Sullivan, and C. A. Wood. TLS encrypted client hello,
work in progress. Internet-Draft draft-ietf-tls-esni-14, IETF Secretariat,
2022.

[53] M. Riaz. Extending the Functionality of the Realm Gateway. Master’s thesis,
Aalto University, 2019.

[54] P. Richter, F. Wohlfart, N. Vallina-Rodriguez, M. Allman, R. Bush, A. Feld-
mann, C. Kreibich, N. Weaver, and V. Paxson. A multi-perspective analysis
of carrier-grade NAT deployment. In Proceedings of the 2016 Internet Mea-
surement Conference, pages 215–229, 2016.

[55] A. Rijsinghani. RFC1624: Computation of the Internet checksum via incre-
mental update. RFC 1624, RFC Editor, 1994. URL http://www.rfc-editor.

org/rfc/rfc1624.txt.

[56] L. Rizzo. Revisiting network I/O APIs: the netmap framework. Communica-
tions of the ACM, 55(3):45–51, 2012.

[57] L. Rizzo and M. Landi. netmap: memory mapped access to network devices.
ACM SIGCOMM Computer Communication Review - SIGCOMM ’11, 41(4):
422–423, 2001.

74

http://www.rfc-editor.org/rfc/rfc7857.txt
http://www.rfc-editor.org/rfc/rfc826.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc792.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc5961.txt
http://www.rfc-editor.org/rfc/rfc1918.txt
http://www.rfc-editor.org/rfc/rfc8446.txt
http://www.rfc-editor.org/rfc/rfc8446.txt
http://www.rfc-editor.org/rfc/rfc1624.txt
http://www.rfc-editor.org/rfc/rfc1624.txt

Bibliography

[58] L. Rizzo, M. Carbone, and G. Catalli. Transparent acceleration of software
packet forwarding using netmap. In INFOCOM, 2012 Proceedings IEEE,
2012.

[59] P. Srisuresh, B. Ford, S. Sivakumar, and S. Guha. RFC5508: NAT behavioral
requirements for ICMP. RFC 5508, RFC Editor, 2009. URL http://www.

rfc-editor.org/rfc/rfc5508.txt.

[60] M. Thomson and S. Turner. RFC9001: Using TLS to secure QUIC. RFC
9001, RFC Editor, 2021. URL http://www.rfc-editor.org/rfc/rfc9001.txt.

[61] G. van Rooij. Real stateful TCP packet filtering in IP filter. In 10th USENIX
Security Symposium, 2001.

[62] X. Wang and H. Yu. How to break MD5 and other hash functions. In Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, pages 19–35, 2005.

[63] J. Weil, V. Kuarsingh, C. Donley, C. Liljenstolpe, and M. Azinger. RFC6598:
IANA-reserved IPv4 prefix for shared address space. RFC 6598, RFC Editor,
2012. URL http://www.rfc-editor.org/rfc/rfc6598.txt.

[64] D. Wing, S. Cheshire, M. Boucadair, R. Penno, and P. Selkirk. RFC6887:
Port control protocol (PCP). RFC 6887, RFC Editor, 2013. URL http://www.

rfc-editor.org/rfc/rfc6887.txt.

[65] T. Ylonen and C. Lonvick. RFC4251: The secure shell (SSH) protocol archi-
tecture. RFC 4251, RFC Editor, 2006. URL http://www.rfc-editor.org/rfc/

rfc4251.txt.

[66] T. Ylonen and C. Lonvick. RFC4252: The secure shell (SSH) authentication
protocol. RFC 4252, RFC Editor, 2006. URL http://www.rfc-editor.org/rfc/

rfc4252.txt.

[67] T. Ylonen and C. Lonvick. RFC4253: The secure shell (SSH) transport layer
protocol. RFC 4253, RFC Editor, 2006. URL http://www.rfc-editor.org/rfc/

rfc4253.txt.

[68] T. Ylonen and C. Lonvick. RFC4254: The secure shell (SSH) connection
protocol. RFC 4254, RFC Editor, 2006. URL http://www.rfc-editor.org/rfc/

rfc4254.txt.

[69] L. Zhang. A retrospective view of network address translation. IEEE network,
22(5), 2008.

75

http://www.rfc-editor.org/rfc/rfc5508.txt
http://www.rfc-editor.org/rfc/rfc5508.txt
http://www.rfc-editor.org/rfc/rfc9001.txt
http://www.rfc-editor.org/rfc/rfc6598.txt
http://www.rfc-editor.org/rfc/rfc6887.txt
http://www.rfc-editor.org/rfc/rfc6887.txt
http://www.rfc-editor.org/rfc/rfc4251.txt
http://www.rfc-editor.org/rfc/rfc4251.txt
http://www.rfc-editor.org/rfc/rfc4252.txt
http://www.rfc-editor.org/rfc/rfc4252.txt
http://www.rfc-editor.org/rfc/rfc4253.txt
http://www.rfc-editor.org/rfc/rfc4253.txt
http://www.rfc-editor.org/rfc/rfc4254.txt
http://www.rfc-editor.org/rfc/rfc4254.txt

	Abstract
	Tiivistelmä
	Preface
	Author's contribution
	List of acronyms
	Contents
	Introduction
	Background theory and related work
	Network address translation
	NAT theory
	NAT traversal

	TCP window
	SYN cookies
	SYN proxy
	Realm gateway
	RGW firewall
	RGW attacks
	RGW attack mitigations
	Application layer gateway
	Shortcomings of RGW

	Improved SYN cookies and nmsynproxy
	Layer 2 SYN proxy
	Header checksums
	Hybrid SYN cookies
	Hybrid SYN proxy
	Fragment handling strategy
	State machine
	Improved hash limiting
	Installation instructions

	Application layer network address translation
	Technical overview
	Technical details
	State machine
	Packet loss and retransmissions

	Protocol analysis
	TCP
	QUIC
	Application-layer protocols

	Carrier grade TCP proxy for unsupported TCP protocols
	Carrier grade TCP proxy in server-side middlebox
	Carrier grade TCP client in client-side middlebox
	New Internet architecture of cooperative firewalls
	Carrier grade TCP client directly in client computer

	Installation instructions

	Theoretical analysis
	nmsynproxy cryptography strength
	nmsynproxy memory usage
	ldpairwall memory usage
	ldpairwall requirements analysis
	RFC4787
	RFC5382
	RFC5508

	Testing
	nmsynproxy correctness tests
	nmsynproxy performance tests
	Protocol and hostname detection performance
	HTTP and TLS header size study
	AL-NAT traversal tests
	Testing environment
	Outgoing NAT connection
	AL-NAT unencrypted connection
	AL-NAT encrypted connection
	HTTP CONNECT proxy
	Port control protocol, TCP
	Port control protocol, UDP

	Conclusions
	Future work

	Bibliography

