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by IETF have many disadvantages. 
 
The Customer Edge Switching aims to replace NAT with a new device called co-operative 
firewall and eliminate the problems of existing NAT traversal solutions. A CES device 
provides global connectivity over the Internet using different types of identifiers, global 
unique domain names and private addresses. 
 
In this thesis, Customer Edge Traversal Protocol (CETP) is introduced as an edge-to-edge 
protocol and prototyped so as to tunnel data and control information while transporting the 
source and destination IDs from one customer network to another. This work also includes the 
policy management of co-operative firewalls. The testing results assure the suitability of 
CETP for inter-CES communication and edge-to-edge signaling. 
Keywords: CES, NAT, NAT traversal, CETP, tunneling, Address exhaustion, Firewall 

Language: English 



 ii 

Acknowledgments 
I would like to thank my supervisor, Professor Raimo Kantola, for his valuable advice and 
helpful comments throughout my thesis work. His broad knowledge on my research work 
gives me opportunity to explore different aspects of computer networks. 

I also appreciate my instructor, Nicklas Beijar. I found him a wonderful person, and I can't 
express how much I've taken away from working with him.  

I want to extend an additional thanks to my friends for their support and encouragement. 
They helped me to have a balance in my life and kept me happy while doing my thesis. 

I am extremely grateful to my siblings. Their successful education backgrounds always 
inspire me to pursue my education diligently.    

Finally, I would like to thank my parents for their love, endless support and encouragement 
during my Master degree. They always keep me motivated for achieving my goals 
especially in terms of education.     

 

Maryam Pahlevan 

26th February 2013 

 

 

 

 

 

 

 

 

 

 



 iii 

Table of Contents 
LIST OF ACYRYNOMS .................................................................................................. vii 
LIST OF FIGURES ............................................................................................................ ix 

LIST OF TABLES .............................................................................................................. xi 
1.  Introduction ..................................................................................................................... 1 

1.1. Research Problem ........................................................................................................... 2 
1.2. Objectives ....................................................................................................................... 2 
1.3. Scope  ........................................................................................................................ 3 
1.4. Structure ........................................................................................................................ 3 

2. The Basics of Network Security ...................................................................................... 5 

2.1. Network Security ........................................................................................................... 5 
2.1.1. Network Security Architecture ................................................................................ 5 
2.1.2. The Basic Components of Network Security ........................................................... 6 
2.1.3. Identification, Authentication and Authorization .................................................... 7 
2.1.4. Trust in Networks ..................................................................................................... 8 
2.1.5. Security Vulnerabilities and Threats ........................................................................ 8 

2.2. Network-based Attacks .................................................................................................. 9 
2.2.1. SYN Flooding .......................................................................................................... 9 
2.2.2. Smurfing................................................................................................................. 10 
2.2.3. Eavesdropping ........................................................................................................ 10 
2.2.4. Data Modification .................................................................................................. 10 
2.2.5. Distributed Denial-of-Service Attack .................................................................... 11 
2.2.6. Spamming .............................................................................................................. 12 
2.2.7. IP Spoofing (Identity Spoofing) ............................................................................. 12 
2.2.8. Man in the Middle Attack ...................................................................................... 14 

2.3. Firewalls ...................................................................................................................... 14 
2.4. Cookie  ...................................................................................................................... 15 
2.5. Cryptography ................................................................................................................ 16 

2.5.1. Symmetric Cipher .................................................................................................. 17 
2.5.2. Asymmetric Cipher ................................................................................................ 17 
2.5.3. The RSA Encryption Algorithm ............................................................................ 18 
2.5.4. Certificate Authority .............................................................................................. 19 
2.5.5. One-way Hash Function ......................................................................................... 19 
2.5.6. Signature ................................................................................................................ 20 
2.6. Return Routability Check ...................................................................................... 20 

3. Some Basics of the Internet ........................................................................................... 21 

3.1. NAT  ...................................................................................................................... 21 
3.2. Basic NAT .................................................................................................................... 22 
3.3. NAPT  ...................................................................................................................... 22 
3.4. NAT Address Assignment Behavior ............................................................................ 22 
3.5. NAT Traversal Issues ................................................................................................... 23 
3.6. NAT Traversal Techniques .......................................................................................... 24 

3.6.1. Session Traversal Utilities for NAT ...................................................................... 24 



 iv 

3.6.2. Traversal Using Relay NAT .................................................................................. 25 
3.6.3. Interactive Connection Establishment ................................................................... 27 
3.6.4. ALG  ...................................................................................................................... 28 

3.7.  DNS Overview ............................................................................................................ 28 
3.7.1. The Domain Name Space ...................................................................................... 28 
3.7.2. Resource Records ................................................................................................... 29 
3.7.3. Resolvers ................................................................................................................ 30 
3.7.4. DNS Message Structure ......................................................................................... 30 
3.7.5. Name-to-Address Resolution ................................................................................. 31 
3.7.6. Address-to-Name Resolution ................................................................................. 32 

3.8. Fragmentation and Reassembly ................................................................................... 33 
3.8.1. Incoming Fragmented Packets at NAT Device...................................................... 34 

4. Customer Edge Switching ............................................................................................. 36 

4.1. Objectives ..................................................................................................................... 36 
4.2. Requirements ................................................................................................................ 36 
4.3. Customer Edge Switching Overview ........................................................................... 37 
4.4. CES Architecture ......................................................................................................... 38 
4.5. Message Flow Across Trust Domains .......................................................................... 39 

5. Customer Edge Traversal Protocol .............................................................................. 43 

5.1. CETP Objectives .......................................................................................................... 43 
5.2. Requirements ................................................................................................................ 45 
5.3. CETP Packet Structure ................................................................................................. 46 
5.4. Protocol Compulsory Control Header .......................................................................... 46 

5.4.1. Identity Encoding ................................................................................................... 47 
5.4.2. Control TLV Format .............................................................................................. 47 

5.5. CETP Control Signaling .............................................................................................. 50 
5.5.1. RLOC TLV ............................................................................................................ 50 
5.5.2. Timeout of the Customer Edge State ..................................................................... 51 
5.5.3. Cookie TLV ........................................................................................................... 52 
5.5.4. New ID Type Query and CA Address TLV .......................................................... 52 
5.5.5. Domain Information ............................................................................................... 53 
5.5.6. Signing CETP Header ............................................................................................ 54 
5.5.7. Reporting Unexpected Messages ........................................................................... 54 
5.5.8. Backoff TLV .......................................................................................................... 55 

5.6. Reporting Unwanted Traffic and Malware .................................................................. 55 
5.7. Payload in CETP .......................................................................................................... 55 

5.7.1. Header Compression for IPv4 Payload .................................................................. 56 
5.7.2. Ethernet Encapsulation for any Payload Protocol .................................................. 56 

5.8. Security Mechanisms Implemeneted with CETP ........................................................ 57 
5.8.1. Return Routability Checks ..................................................................................... 57 
5.8.2. State Management .................................................................................................. 59 
5.8.3. ID Management ...................................................................................................... 59 
5.8.4. Signature ................................................................................................................ 60 
5.8.5. Reporting Attacks .................................................................................................. 60 
5.8.6. Policy Control of CETP ......................................................................................... 61 



 v 

6. Principles of CETP Policy Processing .......................................................................... 63 

6.1. Policy Control of CETP ............................................................................................... 63 
6.2. Policy Class .................................................................................................................. 64 
6.3. FSM Class .................................................................................................................... 65 
6.4. Policy Engine Class ...................................................................................................... 66 
6.5. Auxiliary Methods in Policy Engine Class .................................................................. 67 

6.5.1. Policy Engine Algorithm for Creating Full Requirements .................................... 68 
6.5.2. Policy Engine Algorithm for Processing Control Information .............................. 69 
6.5.3. Policy Engine Algorithm for Signature Verification ............................................. 71 
6.5.4. Policy Engine Algorithm for Replying to Control Information ............................. 71 
6.5.5. Policy Engine Algorithm for Cookie Generation .................................................. 73 
6.5.6. Policy Engine Algorithm for Cookie Verification ................................................. 74 
6.5.7. Policy Engine Algorithm for Checking ID Requirement....................................... 74 

6.6. Policy Engine Algorithm for Creating oFSM .............................................................. 75 
6.7. Policy Engine Algorithm for Creating iFSM ............................................................... 76 
6.8. Policy Engine Algorithm for Processing Pending State .............................................. 78 
6.9. Policy Engine Algorithm for Processing Ongoing State .............................................. 79 

7. Implementation and Evaluation ................................................................................... 81 

7.1. Test Network and Components .................................................................................... 81 
7.2. The Scope of Implemented Prototype .......................................................................... 81 
7.3. Experimental Setup ...................................................................................................... 82 
7.4. Network Elements ........................................................................................................ 84 
7.5. External Libraries ......................................................................................................... 84 

7.5.1. Scapy ...................................................................................................................... 85 
7.5.2. DNS Python ........................................................................................................... 85 
7.5.3. Python Cryptography ............................................................................................. 85 

7.6. Prototype Software Structure ....................................................................................... 85 
7.7. CETP Class Implementation ........................................................................................ 86 
7.8. Testing Scenario ........................................................................................................... 86 
7.9. Example Run of Inbound Policy Without any Requirements ...................................... 87 
7.10. Example Run of Inbound Policy With A Specific ID Requirement ........................... 89 
7.11. Some Example of Unsuccessful Connection Establishments ..................................... 92 

7.11.1. Example Run of Unsupported ID Requirement ................................................... 92 
7.11.2. Example Run of Unsuccessful Return Routability check .................................... 92 
7.11.3 Example Run of Unsupported Receiver Requirement .......................................... 93 
7.11.4 Example Run in Disruptive Network .................................................................... 95 

7.12. Problems Throughout the Research Work .................................................................. 96 
7.13. Evaluation of Results .................................................................................................. 97 
7.14. Discussion ................................................................................................................... 97 

8. Conclusion .................................................................................................................... 100 

References......................................................................................................................... 102 

Appendices ....................................................................................................................... 106 

Appendix A ....................................................................................................................... 106 

Appendix B ....................................................................................................................... 107 



 vi 

Appendix C ....................................................................................................................... 108 

Appendix D ....................................................................................................................... 110 

Appendix E ....................................................................................................................... 112 

Testing Scenario Number 1: .............................................................................................. 112 
Testing Scenario Number 2: .............................................................................................. 113 
Testing Scenario Number 3: .............................................................................................. 113 
Testing Scenario Number 4: .............................................................................................. 114 
Testing Scenario Number 5: .............................................................................................. 115 
Testing Scenario Number 6: .............................................................................................. 115 
Testing Scenario Number 7: .............................................................................................. 116 
Testing Scenario Number 8: .............................................................................................. 117 
Testing Scenario Number 9: .............................................................................................. 118 
Testing Scenario Number 10: ............................................................................................ 118 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii 

LIST OF ACYRYNOMS 

ACL Access Control List  

ALG Application Level Gateway  

BEC Best Effort Communications  

CA Certificate Authority  

CES Customer Edge Switch 

CETP Customer Edge Traversal Protocol 

CSM Connection State Machine  

CuN Customer Network  

DDoS Distributed Denial-of-Service  

DNS Domain Name System  

DoS Denial-of-service  

DS Directory Service  

FSM Finite State Machine 

FTP File Transfer Protocol  

FQDN Fully Qualified Domain Name  

GTO Global Trust Operator  

HRL Host Register List  

ICMP Internet Control Management Protocol  

ID Identity  

IM Instant Messaging 

IPv4 Internet Protocol version 4 

IPv6 Internet Protocol version 6 

ISP Internet Service provider  

ITF Internet Trust Framework  

LAN Local Area Network  

MD Message Digest 

MITM Man In The Middle 

MOC Mobile Operator Certificate  

MTU Maximum Transmission Unit  



 viii 

NAT Network Address Translator  

NAPT Network Address / Port Translator  

NAPTR Naming Authority Pointer  
PAC Packet Access Control  

PN private node  

PRGW Private Realm Gateway   

RLOC Routing Locator 

RPF Reverse Path Forwarding  

RR Resource Record 
RRP Return Routability Procedure  

RTT Round-trip time 

SCTP Stream Control Transmission Protocol  

SIP Session Initiation Protocol  

SPN Service Provider Network 

STUN Session Traversal Utilities for NAT 

TTL Time to Live  
TURN Traversal Using Relay NAT 

UNSAF Unilateral Self Address Fixing architecture 

URI Uniform Resource Identifier  

  

  

  

  

  

  

  

  

 

 

 

 

 

 



 ix 

LIST OF FIGURES 

Figure 2.1: Network security architecture and dimensions ...................................................... 6 
Figure 2.2: Distribute denial of service attack........................................................................ 11 
Figure 2.3: IP spoofing ........................................................................................................... 12 
Figure 2.4: Data encryption terminology................................................................................ 16 
Figure 3.1: Message flow in STUN ......................................................................................... 25 
Figure 3.2: Basic message flow in TRUN ............................................................................... 26 
Figure 3.3: The message structure of resource record ........................................................... 29 
Figure 3.4: DNS message format ............................................................................................ 30 
Figure 3.5: A recursive name resolution ................................................................................. 32 
Figure 4.1: CES concept ......................................................................................................... 39 
Figure 4.2: The message flow in Customer Edge Switching architecture. ............................. 41                                        
Figure 5.1: CETP packet structure ......................................................................................... 46 
Figure 5.2: Protocol header .................................................................................................... 46 
Figure 5.3: Control TLV format .............................................................................................. 48 
Figure 5.4: Length encoding for TLVs and IDs ...................................................................... 50 
Figure 5.5: RLOC TLV format ................................................................................................ 50 
Figure 5.6: Timeout TLV structure ......................................................................................... 52 
Figure 5.7: Cookie TLV formatting ......................................................................................... 52 
Figure 5.8: Example of reverse DNS query ............................................................................ 53 
Figure 5.9: Unexpected message report TLV .......................................................................... 54 
Figure 5.10: IPv4 header compression format ....................................................................... 56 
Figure 5.11: Ethernet encapsulation structure ....................................................................... 56 
Figure 5.12: Example of return routability check on naming level ........................................ 58 
Figure 5.13: Example of forwarding level returrn routability check ...................................... 58 
Figure 5.14: Changing ID type example ................................................................................. 60 
Figure 5.15: Example of successful flow with the lax and the strict admission policy ........... 62 
Figure 6.1: Policy engine Algorithms ..................................................................................... 66 
Figure 6.2: Finite state machine of policy engine ................................................................... 66 
Figure 6.3: Creating full requirement algorithm .................................................................... 68 
Figure 6.4: Policy engine algorithm for processing of CETP control information ................ 69 
Figure 6.5: Policy engine algorithm for TOUT processing .................................................... 70 
Figure 6.6: Policy engine algorithm for domain information processing .............................. 70 
Figure 6.7: Policy engine algorithm for signature processing ............................................... 71 
Figure 6.8: Policy engine algorithm for replying to control information ............................... 72 
Figure 6.9: Cookie generation algorithm................................................................................ 73 
Figure 6.10: Check ID requirement algorithm ....................................................................... 75 
Figure 6.11: Policy engine algorithm for creating oFSM....................................................... 75 
Figure 6.12: Policy engine algorithm for processing flow arrivals   ...................................... 76 
Figure 6.13: Policy engine algorithm for processing pending state ....................................... 78 
Figure 6.14: Policy engine algorithm for processing ongoing state ....................................... 79 
Figure 7.1: The prototype network .......................................................................................... 83  
Figure 7.2: The class diagram of CES prototype .................................................................... 85 
Figure 7.3: Example of successful connection setup for a destination without any 
requirements ............................................................................................................................ 88 



 x 

Figure 7.4: Example of successful connection setup for a destination with MOC ID 
requirement .............................................................................................................................. 90 
Figure 7.5: Example of unsuccessful connection establishment due to unsupported ID 
requirement .............................................................................................................................. 92 
Figure 7.6: Example of unsuccessful connection setup due to unsuccessful return 
routability check ...................................................................................................................... 93 
Figure 7.7: Example of unsuccessful connection establishment due to unsupported receiver 
requirements ............................................................................................................................ 94 
 
 
  

  



 xi 

 LIST OF TABLES 

TABLE 5.1: DIFFERENT CONTROL TLV GROUPS ............................................................ 48 
TABLE 5.2  POSSIBLE OPERATIONS FOR CONTROL TLVS ............................................. 49 
TABLE 5.3 LIST OF COMBINATION OF COMPATIBILITY BITS ....................................... 49 
TABLE 5.4 TRUST MECHANISMS OF CETP ....................................................................... 57 
TABLE 6.1 DIFFERENT TYPES OF  OF INTERACTIONS ................................................... 63 
TABLE 6.2 LIST OF FSM TIMEOUTS AND THEIR DESCRIPTION ................................... 65 
 
 
 

 

 

 

 



 

 1 

1 Introduction 

As a result of the large scale deployment and success of the Internet over the last decades, 
the original Internet architecture has been stretched to the limit. In the future Internet 
architecture and protocols, several new problems and requirements that cannot be solved 
by the current Internet must be taken into account. The Internet Protocol version 4 (IPv4) 
address space exhaustion, traversing middle boxes such as Network Address Translators 
(NATs) and firewalls, unwanted traffic, mobility and multi-homing are some of such 
problems. 

Since IPv4 addresses are required to address user devices and intermediate network 
elements in the global Internet, IPv4 address extinction is seen as one of the most 
important problems in the current Internet. There have been many proposals and solutions 
to alleviate scalability problems that exist in the original Internet design. Among all these 
proposals, NAT and Internet Protocol version 6 (IPv6) are gaining more attention and are 
deployed widely in practice. A NAT extends the IPv4 addressing lifetime by hiding local 
routing information of the customer networks from the core network and reusing IPv4 
addresses, but makes it difficult to initiate communication with the hosts in the private 
network from the public network. 

To solve the NAT traversal problem, IETF has proposed Unilateral Self Address Fixing 
architecture (UNSAF) [5] that operates by the help of costly adds-on servers, modifying 
user devices, cluttering application code with application specific NAT traversal code and 
adding keep-alive signaling. The keep-alive mechanisms and unsolicited traffic consume 
network resources rather fast and particularly for battery powered mobile devices cause 
additional drain to the batteries. 

The Customer Edge Switching [23] has been proposed to replace NAT with a device called 
Customer Edge Switch (CES). A CES device resides at the edge of the customer network 
and provides extensions to the functionalities of a NAT. The main difference is that CES 
unlike NAT makes hosts and servers in the private networks globally reachable without 
using keep-alive signaling or even non-scalable and costly servers. In addition, CES in a 
similar way to firewalls can make a decision whether the incoming/outgoing packet is 
legitimate or not. Conceptually, a CES is a cooperative firewall, it allows the sender’s 
network and the receiver’s network to cooperate to counter the actions of the hosts that 
have been infected by viruses and Trojans and that may be joined in a botnet. A co-
operative Firewall extends the options for decisions that the firewall can make from 
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admit/deny to admit/deny/query. Due to this, a CES helps to reduce unwanted traffic that 
reaches the destination host. 

1.1  Research Problem 

This master thesis is aimed at verifying and refining the specification of the Customer 
Edge Traversal Protocol through prototype implementation and testing. The starting point 
of the work was an outline protocol definition created by professor Kantola on a set of 
slides.  

The CETP is an edge-to-edge tunneling protocol. The purpose of CETP is to tunnel data 
packets and control information while carrying chosen types of identities from one 
customer network to another. The protocol operates between two communicating CES 
devices which require desired types of identities, globally unique domain names and 
private addresses to provide global connectivity over the public Internet. The CETP gives 
the private network various tools like return routability check on naming or forwarding 
level to make an informed admission decision on incoming/outgoing packets and 
consequently enhances trust between two customer networks and two endpoints and 
reduces unwanted traffic that reaches a destination host.  

CETP makes the inbound CES responsible for detecting and eliminating source address 
spoofing thus making it reasonable for the inbound node also to collect evidence of 
misbehavior of the sender and attribute the evidence to the sending host and at least to the 
customer network that serves the sender. Furthermore, we believe that CETP with the help 
of its on-demand routing capability can be used as a means to traverse multi-homed 
network boundaries. CETP can be modeled to run on top of UDP, over IP as a new 
protocol or over Ethernet by defining a new Ether-type for CETP. 

All aspects of the CETP protocol are policy controlled. In this thesis, a significant effort is 
presented for policy control implementation and testing in connection with the CETP 
protocol. 

1.2  Objectives 

The purpose of this research work is to achieve a stable specification of CETP and further 
prototype the protocol as an essential component of our new co-operative firewall 
architecture. In addition, we implemented a policy enforcement module to enforce rules in 
co-operative firewalls. More specifically, the policy control of CETP is developed to 
evaluate the possibility of the idea of co-operative firewalls. This research is carried out in 
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a way that it can easily interoperate with the previous Master’s theses that have prototyped 
the Customer Edge Switching concept, Private Realm Gateway (PRGW)[29] and Session 
Initiation Protocol (SIP) and File Transfer Protocol (FTP) Application Level Gateways 
(ALGs) [28]. 

To assure the correctness of the developed CETP packet structure and the logic of the 
policy processing algorithms, we tested the prototype with a significant number of testing 
scenarios. The key idea behind this extensive testing was to check the suitability of the 
CETP solution for the inter-CES communication while tunneling data packets and control 
information over the core network and transferring a variety of identities. The functionality 
of the program was also examined with well-known protocols such as SSH, SFTP and 
HTTP. 

It is important to note that the developed prototype was not evaluated in terms of 
performance. Instead, we verified the logic of the implemented algorithms thoroughly. In 
addition, this work is completely transparent to end hosts. 

1.3  Scope      

This thesis presents a structure of the CETP message that emerged due to the work on this 
thesis. Additionally, it contains the policy control algorithms which are used for edge-to-
edge signaling. However, the policy processing could be carried out in several ways; we 
only focused on a single model and developed that throughout this work. 

The CETP implementation is integrated into the former CES prototype that has been 
developed as a proof of the CES concept. Therefore, the prototype only contains simplified 
Customer Edge Switching functionalities. We did not modify the core functions unless it 
was required in the CETP development process. 

Since the purpose of this work was a rough prototyping of CETP and its relevant methods 
with Python, we did not conduct any performance testing. Moreover, the prototype was not 
tested with the mobile end hosts and multi-homed networks. 

1.4  Structure  

This thesis work is described in eight chapters. The basics of the network security are 
discussed in Chapter 2. Besides, some of the network attacks and corresponding counter 
measurements are explained in the subsections. Chapter 3 briefly explains some basic 
concepts of the Internet such as DNS, NAT and fragmentation. This chapter examines the 
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NAT concept in more depth and lists the issues that have emerged as a result of using 
NATs at the edge of the private networks. A Customer Edge Switching solution which has 
been proposed to obviate the NAT reachability problem is described in the fourth chapter. 
Understanding this chapter is essential to follow the next chapters. In the fifth chapter, the 
key ideas of developing CETP as an edge-to-edge tunneling protocol are presented in 
details. The packet structure of the CETP and the story behind each field in the CETP 
message are also discussed in this chapter. The sixth chapter is devoted to describing how 
the experimental environment is set up and how the networking elements involved in the 
prototype network are configured. Additionally, the algorithms enabling the policy 
processing for the CETP protocol are explained extensively in Chapter 6. Chapter 7 goes 
through some special cases of the testing scenarios and then evaluates the results that were 
obtained from the entire test cases. The final chapter provides the conclusion of the thesis.  
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2 The Basics of Network Security 

This chapter discusses the different aspects of the network security and why it has become 
more and more important in recent years. The most contemporary network vulnerabilities 
and attacks will be listed and explained briefly. The end of this chapter is focused on 
cryptographic mechanisms and tools that are extensively used in Internet protocols as 
strong counter measurements to fraud and unauthorized activities. 

2.1  Network Security 

Over the recent decades, the Internet has evolved significantly and the number of the users 
who use the Internet for fulfilling their needs has increased exponentially. At the same time 
more attention is turned to malicious actions and unlawful access to the network’s and the 
user’s resources. The network attacks are usually targeted to capture or manipulate 
personal data or acquire control of the victim’s system. By granting authority to tools with 
the malicious codes hidden inside them, insecure administration systems, vulnerable 
security systems, buggy operating systems and installed software provides numerous 
opportunities for attackers to initiate illegal activities. The malware like worms, viruses 
and Trojan horses, spam circulating, social engineering techniques such as phishing, 
identity theft and stealing personal and critical information are some of the dangerous 
network security threats.    

There are several ways to infect a computer system by malicious codes. For instance, 
transferring malware from the Internet to the victim’s system can happen by downloading 
a file, clicking on a link that redirects to a fake website or by opening spyware carried in a 
received email. Additionally, some browsers download malicious codes while surfing an 
infected website. In this scenario, the user does not do anything to trigger downloading 
malware from the visited website. [33] 

2.1.1 Network Security Architecture 

The security framework can be described using layers and planes. The purpose of the 
security layers is to provide security for the network infrastructure and facilities. Due to the 
layering design in the security layers, the end-to-end security between different 
applications can be built regardless of the type of the communicating applications. To 
achieve end-to-end security, security is split into infrastructure layer, services layer and 
application layer. Since there are various vulnerabilities on each network layer, each of the 
security layers strives to fulfill security requirements of the specific layer. For instance, the 
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Infrastructure layer tries to provide security across network elements such as servers, 
routers and physical links. The service layer takes care of the security of the services that 
are given to the Internet users by the Internet Service providers (ISP). In contrast, the 
application layer is associated with applications that function over the network.   

The security planes protect a range of actions that are done over the Internet. The 
Management plane, the Control plane, and the End-User plane are three security planes 
which are aimed to meet security requirements of the activities like management activities. 
The management plane addresses the security of Administration, Maintenance and 
Provisioning activities. On the other hand, the control plane is responsible for providing 
the security of the signaling activities including setting up a connection between two 
communicating endpoints independent of the transmission facilities and network links. The 
end-user plane concerns the security of data and actions that reside or take place at end 
systems. The big picture of the network security architecture is shown in Figure 2.1. [50]  

   
      Figure 2.1: Network security architecture and dimensions [revised] (Zhao et al. 2003) 

2.1.2 The Basic Components of Network Security  

A closer look on Internet security shows that the basic idea behind the security concept is 
to preserve privacy. Privacy is about controlling the level of the visibility and accessibility 
of the personal information by its owner. In other words, privacy means that user’s identity 
and his/her actions must be protected. [50] 

Data security has four different dimensions: Data Confidentiality, Integrity, Availability 
and Non-repudiation.  To provide data confidentiality, unauthorized access to data has to 
be hindered through encryption mechanisms, access control lists, and file permissions. 
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Also, an unauthorized party should not be able to generate, modify, remove, or replicate 
data. This feature is named data integrity. Data integrity cannot be guaranteed without 
knowing and verifying the sender of data. [10] 

The availability dimension defines the ability to provide uninterrupted access to network 
resources, services and information storage for the right person. [44]  

Non-repudiation is another aspect of the data security. It does not permit users to deny their 
activities that they did on the data including sending or receiving packets, making or 
receiving audio or video calls. There are two forms of non-repudiation ability that can be 
provided by the network. Non-repudiation with the proof of origin of data hampers any 
attempts by the sender to deny having sent messages. On the other hand, the recipient is 
unable to deny receiving the data through proof of delivery of data. [50] 

2.1.3 Identification, Authentication and Authorization 

In order to preserve confidentiality, integrity and availability of computing resources, 
firstly the user has to identify itself to the destination system, then the system that serves 
the customers’ needs to verify the identity of the sender and eventually the system 
administrator should grant a specific access right of resources to the user. These three 
functions are named identification, authentication and authorization respectively. 

The identification procedures often do not provide any certificate that can be used to assure 
the identity of users. The prevalent identification mechanism usually uses a username that 
consists of a mixture of the letters, numbers and other character's to identify the end system 
or user. 

Authentication comes after the identification function as the next step. There are various 
authentication mechanisms in which the user is required to validate its identity. To prove 
user’s identity, the user must provide certain entities to the destination system. These 
elements can be passwords, fingerprints or access cards.  

Once the identification and authentication process in a destination system is in place, the 
system administrator must decide what level of access rights to assign to the user. This 
procedure of granting rights to the end system is called authorization. [10] 
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2.1.4 Trust in Networks 

Trust is a concept involving different dimensions and disciplines. There is a mutual 
relationship between the essence of network security and absence of trust. Specifically, if 
trust is not provided across the networks, the Internet could not be used extensively for e-
commerce and other serious services that need secure and trustworthy communication. 
However, the trust concept can be defined in different ways, in this thesis our focus is on 
the definition of trust that refers to it as a property of a relationship. This relationship 
consists of two parties. The first party is the trustor who relies on the legitimacy and 
rightfulness of the second party called trustee. When the trustor chooses to trust the trustee, 
it accepts a risk.  

The purpose of trust modeling is to simplify connection establishment where the 
environment is hostile and also communicating end points have contrary aims. This can be 
achieved by minimizing risk in those situations.  

In an act of communication between a sender and a receiver, the receiver is the trustor, 
while the sender is the trustee. The receiver’s risk is realized when the received content 
turns out to be unwanted.  

In the computer science, trust is treated as a logical concept. Consequently it is gained by 
examining many conditions and applying the respective propositional logic. It can be seen 
in the form of stateless packet filtering. This filtering function can be enhanced 
significantly by considering the previous activities of the source entity.  It is worthy to 
mention that security risks cannot be always removed completely, therefore setting up 
connections must be allowed even in the existence of risks. 

Authentication is being used as a strong tool to improve trust in the global network. As 
authentication is costly, a public network administrator can justify the expenses required 
for the essential authentication infrastructure only with the value-added services and usage 
based billing. [49]   

2.1.5 Security Vulnerabilities and Threats   

When a system is designed, implemented and used, a number of bugs and weak points 
appear in the system. An attacker can take advantage of the system’s security 
vulnerabilities and break into the system. The security vulnerability concept differs from a 
security threat, risk and even network-based attack. 
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Any activity that tries to violate the confidentiality, integrity, or availability of resources is 
known as a security threat. A security threat can be active or passive. In an active threat 
like masquerading and denial of service, the attackers change the state of the system while 
making unauthorized access to the system’s resources. In contrast, a passive threat 
including eavesdropping takes place without any changes in the system’s state. [50] 

The threats can be split into four categories: disclosure, deception, disruption and 
usurpation. A disclosure threat happens when an attacker accesses the resources without 
adequate privileges. Deception means that the system receives wrong information instead 
of valid data. In the disruption threat, malicious users prevent the system to function 
regularly. The usurpation is about supervising a destination system partially or completely. 
[9]  

Vulnerabilities and threats in a separate context cannot make any security risk, whereas 
when a threat combines with security vulnerability, the security of the system encounters a 
risk. The following equation usually is exploited to explain a security risk. [10] 

Risk = Threat × Vulnerability 

For example, let us assume a web server attack as a risk. To evaluate this security risk, an 
overflow flaw in the desired application as a vulnerability is combined with the devastating 
activities such as an unauthorized access, using sophisticated tools and suitable knowledge 
about the system. The packet loss, data manipulation and loss of reputation are some of the 
security risk’s results. [50] 

2.2  Network-based Attacks                 

The action that causes a potential violation of the security to happen is called an attack. 
Lack of appropriate authentication and encryption mechanisms in the TCP/IP protocol 
stacks provides the basis for a wide range of attacks. Some of the potential attacks are 
described in the following subsections. 

2.2.1 SYN Flooding 

The three-way handshake that is used to set up a TCP session, gives a significant number 
of opportunities to attackers. For a TCP connection establishment, first an initiator sends a 
SYNchronize packet to the destination host and then the responder replies with the SYN-
ACK message. The TCP session is established once the sender returns the ACK packet. 
The SYN flood that exploits this TCP’s weakness to perform an attack can be considered 
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as an example. In this attack, a malicious user sends many SYN packets to the victim and 
does not respond to any of the acknowledgement packets. As a consequence, the receiver is 
overloaded with irrelevant packets and cannot reply to messages that are received from 
legitimate clients. The SYN cookie protects recipients against the SYN flood attack. In this 
solution, the receiver, instead of creating state upon the reception of the SYN packet, 
encrypts the SYN packet and sends it back inside the reply message. This procedure is 
quite easy to implement and eliminates the SYN flood effectively. This kind of mechanism 
is supported by the Stream Control Transmission Protocol (SCTP). However, this 
procedure is not supported by the TCP protocol. [4] 

2.2.2 Smurfing 

The Internet Control Management Protocol (ICMP) allows end users to send an echo   
request message in order to discover whether a destination host is alive or not. The echo 
packets can be sent and replied to using broadcast addresses in some implementations of 
the protocol.  

To perform this attack, echo packets are sent with the victim’s address forged as a source 
address and relayed to the broadcast address targeting all hosts in a subnet. These hosts that 
participate in the Smurfing attack are known as smurf amplifiers. A smurf amplifier sends 
back the echo replies to the victim entity and thereby it makes the victim system 
unresponsive to incoming packets. 

Guarding network elements and users against smurfing can be done by excluding the 
broadcast ping capability from the Internet protocol implementation. [4]                                             

2.2.3 Eavesdropping 

In a compromised network, since a large number of connections established over the global 
network are unsecured and exchanged data flows are not encrypted; sniffing data traffic is 
a possible attack. Cryptography is proposed as a solid counter measure to snooping. [44] 

2.2.4 Data Modification 

An attacker may manipulate data which is intercepted on communication facilities. This 
attack targets the data integrity and in the same way as eavesdropping it can be prevented 
by encryption. [9] 



 

 11 

2.2.5 Distributed Denial-of-Service Attack  

The Denial-of-service (DoS) attack is one of the most common network layer attacks. In 
DoS attacks, an attacker brings down a single destination and does not allow the victim to 
operate normally. The DoS attacks can be eliminated by locating the hackers and filtering 
the data flow coming from those IP addresses. [10] 

Since protecting systems against a DoS attack from a single IP address is quite 
straightforward, therefore the more complex form of DoS attack called Distributed Denial-
of-Service (DDoS) is developed by attackers to defeat this weakness.   

In this attack, the attacker firstly exploits a flaw in one computing system and makes use of 
it as a DDoS master. Then the master system gains control of a collection of hosts and 
installs the DDoS attack agents on the compromised machines. The DDoS attack is being 
launched when the intruder sends a trigger signal to the infected computers and as a result 
those machines overwhelm the specified destination with a large number of unsolicited 
packets. [4] The DDoS attack, unlike the DoS attack, is very difficult to defeat. In other 
words, the real hacker could not be discovered, even though the victim finds the sources of 
the attack because they are intermediate systems just being compromised to launch the 
DDoS attack and not the genuine attacker. In most cases, these controlled hosts take part in 
the DDoS attack unknowingly. [10] 

          
           Figure 2.2: Distribute denial of service attack 

The ICMP trace back message is being proposed and added to the standard in order to 
counter the DDoS attack. [7]  
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2.2.6 Spamming 

The intention of a spammer launching a spam attack is fraud or selling something (like 
Viagra) or attracting the user to a site that will download a virus/Trojan to the victim. To 
do a spam attack, the spammer forges a new email account and starts sending huge 
volumes of spam to a list of the legitimate email addresses that can be derived e.g. from 
unscrupulous websites. [2] 

2.2.7 IP Spoofing (Identity Spoofing)  

For a long time malicious hosts have exploited various ways to conceal their real identities. 
IP spoofing is one of the well-known techniques used by hackers to mask their identities. 
[46] In IP spoofing, an attacker masquerades as a legitimate system by generating packets 
with fake IP addresses. To be exact, the source address field of the IP header is replaced 
with an IP address that does not belong to the actual sender. Address spoofing is usually 
feasible only in UDP, ICMP and SYN. After SYN in TCP it is not possible to spoofed 
address. [15] 

Let us assume there is an active connection (e.g. UDP connection) between two 
communicating end users, the partner and the victim, as shown in Figure 2.3. Within the 
ongoing session, a pirate creates an IP packet with the partner’s address as a source address 
and forwards it to the victim system. In the TCP/IP suite, the identities of the sender and 
the recipient are not verified by the network elements and hosts. Therefore, when the 
message with a spoofed address is received, the victim assumes that the message was 
originated from the partner; thereby it accepts the packets and sends back replies to the 
partner iteratively. In the described scenario, the partner can be the victim and the victim 
can be the reflector. The spoofing attack can have more destructive effects on the 
destination system if the reflectors are amplifiers. [9] 

                      
                                                        Figure 2.3: IP spoofing 
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Attackers aid DoS attacks with IP spoofing. It means a single attacker can send many 
packets with various spoofed IP addresses and thus take the targeted system down. Using 
random spoofed addresses in forged packets makes eliminating unwanted traffic very hard. 
Since it seems that the flood of traffic comes from different directions, consequently it is 
difficult to trace back the packets. [45]   

Additionally, IP spoofing could be used in the applications and networks in which hosts 
are identified and authenticated based on their IP addresses, however, TCP packets cannot 
be used easily with spoofed source addresses. In these cases, the hacker pretends being a 
trusted system by using spoofed addresses, thereby gaining an unauthorized access to 
victim’s data. This attack results in monitoring, manipulation and corruption of 
information. [8] 

The IP spoofing is widely used to launch a wide range of attacks. These types of attacks 
can be divided into blind spoofing, non-blind spoofing and man-in-middle attack.  

In the non-blind spoofing, an attacker and a destination system are residing in the same 
subnet. Consequently capturing the sequence and acknowledgement numbers is not a 
costly process. The attacker first breaks the ongoing connection down and then re-
establishes the session with a correct sequence and acknowledgement number. This attack 
is known as session hijacking.  

On the other hand, sniffing the sequence and acknowledgement numbers is not feasible in 
blind spoofing. Instead, the attacker sends many packets towards the victim system in 
order to guess the sequence and acknowledgement numbers precisely. According to the 
aforementioned explanation, it is obvious that blind spoofing is a more complicated and 
time-consuming process than the non-blind spoofing attack.  

A limited number of countermeasures like ingress filtering and encryption have been 
proposed to eliminate IP spoofing from the global Internet. This fact implies that it is rather 
hard for the network elements to detect malicious hosts who exploit spoofed identities or 
addresses. 

Adding the ingress and egress filtering functionality to border routers is a primary action 
usually taken in the spoofing protection technique. In the filtering mechanism, the inbound 
interface through the Access Control List (ACL) implementation drops the incoming 
packets with the private IP addresses. Furthermore, inbound messages with a local IP 
address as a source address should be filtered out by this interface. The outbound interface 
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can also help spoofing defense by specifying a range of the legitimate private IP addresses 
accurately. [45] 

2.2.8 Man in the Middle Attack  

The Man in the Middle (MITM) attack can be seen as active eavesdropping. It 
encompasses different types of attacks including two forms of IP spoofing which were 
described earlier.  To launch a man in the middle attack, a hacker sits between two 
communicating end points and tries to gain control of the data traffic. The attacker often 
manipulates or corrupts the captured packets and then forwards them to the targeted victim. 
In the extreme cases, the malicious user establishes an independent connection with the 
victim systems and impersonates either the recipient or the initiator of the conversation. 
This makes the attacker able to access the victims’ secret information while both sides of 
the communication believe that they are conversing with a trusted host. [45] 

Mutual authentication is known as a main solution for preventing MITM attacks. For 
instance, the communicating parties could be authenticated and verified through a trusted 
certificate authority. [11] 

2.3  Firewalls 

A firewall is the most common and effective way to protect the internal network from the 
public Internet and hence provides a level of security for all outbound and inbound 
connections. By separating the trusted local network from the outside world, a firewall 
limits the impact of the security problems of the Internet on the internal network. Most 
often, a firewall stands between a corporate network and the global network. The existing 
firewalls in the market fall into two categories: The host based and network based 
firewalls. 

Since all incoming and outgoing data traffic passes through a single access point where the 
firewall is residing, the firewall is capable of tracking what exactly is taking place in the 
network. Commonly, a firewall makes a decision whether a packet that is either sent to or 
received from the Internet is legitimate or not. It is more convenient to apply the security 
policies in one entity (i.e. firewall) rather than distributing the security decisions over a 
large number of network elements.  

Each packet can be analyzed and filtered based on the different layers in the TCP/IP suite. 
According to this criterion, there are three types of firewalls: Packet filtering, circuit 
gateways, and application gateways. [53]  
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The packet filters usually incorporate with routers which interconnect various networks 
and thus deliver packets to particular destinations. They filter out packets according to the 
IP addresses and/or port numbers. Mostly, the packet filters are stateless. It means that they 
do not keep any record of the processed packets. Filtering on either the incoming or the 
outgoing interfaces being performed using a list of eligible hosts and services and a 
blacklist of the malicious users. 

The spoofing attack can be prevented by packet filters. To accomplish this, they inspect 
inbound packets to block those malformed packets that use the private or loopback 
addresses as source addresses. This functionality is named egress filtering. In addition, 
outgoing packets must have the valid source addresses; otherwise they will be dropped by 
ingress filtering.  

The complexity of filtering remarkably depends on the size of the internal network’s 
address space. Moreover, the packet filtering is not accurate enough to apply a large 
portion of the security rules. [12] 

Circuit gateways are another form of firewalls in which the packets are filtered at the 
transport layer of the Internet protocol stack. They are more prohibitive than packet filters 
and add many useful services to existing firewalls like encrypting data flows between two 
firewalls.  

The circuit gateways cannot guard systems against the application level attacks. Hence the 
application gateway functionality in firewalls is proposed to fulfill this need. They serve 
one or more applications and apply the security policies that need finer control granularity 
than what packet filters and circuit gateways are able to do. Although, application 
gateways incredibly reduce the security risks over the network, they add a significant delay 
to the response time of the services residing behind firewalls. [4]  

2.4  Cookie 

In recent years, the DoS attacks are known as the most common security risks in that 
attackers bombard a targeted victim with connection initiation queries and thus deplete the 
victim’s resources including memory and CPU cycles. To limit this attack and its 
destructive effects, Cookies can be used. The recipient does not create any state upon 
reception of the session initiation query until it ensures that the source address of the 
message is genuine. [30]  
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In this procedure, the recipient replies to the initiation request with a block of text called a 
cookie, which is used in order to figure out whether an initiator of the session uses a forged 
IP address. If the initiator resides at the claimed address, it can resend the session initiation 
request with the received cookie. After the two first messages, the responder just accepts 
those session initiation requests that carry the same cookie; otherwise it discards the 
packets originated from a malicious user.  

Since in the described scenario, only the responder is involved in the cookie generation and 
examination process, the initiator does not need to be aware of what exactly is happening 
in the cookie generation algorithm and the algorithm can be defined locally. Due to this 
feature, the different implementations of protocols and standards use various procedures 
for generating a cookie. The only common principle among all these algorithms is that the 
cookie must be recoverable by the responder based on the received packet not using any 
saved state. [26]          

2.5  Cryptography  

Encryption is usually exploited to provide data confidentiality and integrity, whereas it 
does not help with the availability of data. There are various cryptographic tools that use 
different techniques and protocols for encrypting data, exchanging key information 
securely and authenticating the origin of data. The strength of a cryptographic system is 
measured based on its complexity. It is clear that a reasonable cryptographic block must be 
complex enough, so that launching an attack becomes more expensive than what the 
attacker is willing to pay. [50]     

In the encryption process, a plain text is transformed into humanly unreadable text which is 
known as a ciphertext. The original text can be derived from the ciphertext with a reverse 
conversion named decryption. However, as the encryption algorithms are public, keys that 
are the fundamental inputs for these algorithms have to be secret. Figure 2.4 shows a 
general data encryption process. 

𝐶𝑖𝑝ℎ𝑒𝑟𝑡𝑒𝑥𝑡   𝐶 =  𝐸𝑘 (𝑃)     (1)  𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 
                                 𝑃𝑙𝑎𝑖𝑛𝑡𝑒𝑥𝑡    𝑃 = 𝐷𝑘�𝐸𝑘 (𝑃)� (2)  𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑐𝑒𝑠𝑠                          

         Figure 2.4: Data encryption terminology, Ek: encryption key, Dk: decryption key                        

A wide variety of encryption techniques are being used in order to encrypt cleartext into 
ciphertext. Among these techniques, substitution is the easiest one in which each letter of 
the cleartext is being replaced with the corresponding character in the ciphertext alphabet. 
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Transposition is another way to encipher plaintexts. In this approach unlike substitution, 
the order of characters in the cleartext is changed according to the value of the encryption 
key. For instance, if 4 is chosen as an encryption key, firstly the original text must be split 
into the fixed-sized segments (i.e. 4 characters). Then the first character of each segment is 
fit into the beginning of the ciphertext. The second letters in each part come after them. 
This pattern applied over and over until the ciphertext is built completely. [20]   

Generally, there are two forms of encryption algorithms. The most popular one is 
symmetric cipher.  The symmetric cipher uses the same key for encrypting cleartext and 
decrypting ciphertext. In contrast, some encryption algorithms are asymmetric and hence 
they have separate keys for encipher and decipher messages.  

2.5.1 Symmetric Cipher    

In a symmetric cipher, a key called shared secret is used for both the encryption and 
decryption function. The symmetric ciphers are categorized into two groups: block ciphers 
and stream ciphers. A block cipher tool firstly divides data into fixed and equal sized 
blocks and then enciphers each block of data. The encryption process of each block is 
performed atomically. If the length of data is not dividable by the block size of a block 
cipher algorithm, the input needs to be padded. In different block cipher algorithms like 
AES [18], CAST [1] and Blowfish [42] the block size varies.  

A stream cipher unlike a block cipher operates on the data bit by bit. To encipher data in 
the stream cipher, initially a stream of bits is produced by using a key and then the 
generated stream is XORed with the input. The encryptor and decryptor of the stream 
cipher tool must be synchronized and they must use the same bit stream in the ciphertext to 
recover the corresponding bits in the cleartext. As a consequence, if these two functions get 
out of synchronization, the original input cannot be derived from the ciphertext. This 
synchronization problem makes stream ciphers such as RC4 [39] less popular than a block 
cipher. [16] 

2.5.2 Asymmetric Cipher   

Asymmetric cipher which is also called public-key cryptography exploits a pair of keys to 
encrypt and decrypt messages exchanged over insecure communication links. In this 
encryption system, a plaintext is enciphered by one of the two keys that is named public 
key and can be deciphered only by the other one which is called the private key. The 
private keys are produced internally and never distributed. Moreover, they are not 
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derivable from the corresponding public keys. Therefore, the public keys can be 
transmitted in the plaintext to any end systems who request encrypted communication. [20] 

The application of a public-key cryptosystem can be divided into three different groups: 
encryption/decryption, digital signature and key exchange. The encryption procedure is 
implemented with the help of the public key described above. To generate a digital 
signature, the sender uses its private key in order to sign the whole message or a shorter 
form of it. Both communicating parties are able to swap key materials through their private 
keys. 

However, public-key cryptosystems use a wide range of cryptographic algorithms, but all 
of them conform to similar principles. From a computational point of view, generating a 
pair of keys via public-key algorithms must be facile. Besides in these methods data 
encryption and decryption have to be computationally easy. For message authentication, it 
must be impossible to derive a cleartext from a ciphertext only by knowing the public key. 
[44] 

2.5.3 The RSA Encryption Algorithm 

Since in the symmetric cipher, the session key exchange has been problematic and secret 
keys need to be distributed securely, therefore a public-key system is proposed as an 
alternative solution and widely implemented.  

The RSA [16] algorithm has been recognized as the most widely deployed public-key 
encryption since 1977. This algorithm was designed and developed by Rivest, Shamir and 
Adelman. To generate a pair of keys in the RSA scheme, firstly two large positive prime 
numbers, p and q, are chosen and their multiplication (i.e. n) is computed. After that Euler 
totient of n which equals to the product of (p – 1) and   (q – 1) is calculated. As the next 
step, an integer e that is prime to the Euler totient of n is selected. Eventually, the integer d 
is computed based on the following formula. 

                                                  𝑑 ∗ 𝑒 𝑚𝑜𝑑 𝑞(𝑛) = 1                                                                       (1)           

In this public-key algorithm, the public key is  

                                                  KU =  {e, n}                                                                                     (2)  

and the private key is 

                                                  𝐾𝑅 =  {𝑑,𝑛}                                                                                    (3)                 
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Consequently, only the recipient who decrypts the ciphertext must be aware of d’s value. 
On the other hand, e and n are available for both sides of the communication. To encrypt a 
message M, a sender calculates  

                                                C =  𝑀𝑒 mod n                                                                               (4)  

and furthers sends C to the desired target. On the opposite side, the receiver deciphers C by 
computing  

                                                M =  𝐶𝑑  mod n                                                                        (5). [44]  

2.5.4 Certificate Authority   

The fundamental advantage of public-key cryptography is that public keys can be 
broadcasted to any end systems in a large scale. Although, this feature seems very 
beneficial, it has a serious defect. As there is no explicit authentication mechanism in the 
public key exchange, it is feasible for a malicious user to pretend to be a trusted party and 
send forged public keys to the targeted victim. After that, the attacker is able to decipher all 
encrypted messages sent by the victim and thus gain an unauthorized access to the victim’s 
confidential information. 

To defeat this weakness, the public-key certificate is considered as an appropriate proposal. 
Typically, a public key certificate ties a public key to the identity of the key owner and 
digital signature. In fact, the signature is the whole certificate block that is signed digitally 
using the private key of a trusted third party. Commonly, the trusted third party is referred 
as a Certificated Authority (CA). A participant announces its public key to a CA over 
secure channels and then acquires a certificate. Since then, the participant can advertise the 
certificate instead of the public key. The integrity of the certificate can be verified through 
examining the appended signature. [44] 

2.5.5 One-way Hash Function 

In hash functions, an arbitrary-size message is hashed into a fixed number of bits which is 
called a Message Digest (MD). A hash function is known as a one-way function, if the 
original block of data cannot be recovered only by knowing the corresponding hash value. 
Furthermore, in terms of computation, it should be infeasible to find two different integers 
(x ≠ y) so that they are hashed to the same MD by the hash function. This characteristic is 
referred to as collision resistance. SHA-1 [38] and MD5 [21] are two examples of one way 
hash functions that are widely used in cryptosystems. [44] 
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2.5.6 Signature 

Public-key systems can in addition to encryption be used to provide non-repudiation. To 
achieve this, a sender encrypts a block of data with its private key and then on the recipient 
side, the encrypted message is deciphered with the sender’s public key. The ciphertext 
obtained in this scheme is known as a digital signature.   

As only the sender accesses its own private key, no one else could encipher a message in 
such a way that it could only be decrypted with the sender’s public key. In other words, 
attackers are unable to modify messages without knowing the initiator’s private key. 
Therefore, the integrity of data and the origin of data can be preserved through digital 
signature. [20] 

It is obvious that in terms of processing, encrypting the whole message is relatively 
expensive. Consequently, for signing a message, a hash function is exploited to compute a 
shorter version of the message (i.e. the MD) and further the MD instead of the entire 
message is encrypted with the private key. In this approach, the whole message except the 
signature is sent as clear text, thereby data confidentiality is not provided and 
eavesdropping cannot be eliminated. [44]  

2.6  Return Routability Check 

The main objective of the Return Routability Procedure (RRP) is to verify that the sender 
could receive packets at a claimed address. More specifically, the responder sends a 
message towards the address that is claimed to be the source of the communication. If the 
desired reply is sent back by the initiator, the validity of an address would be proven.  

This approach does not require any form of authentication such as the public-key 
infrastructure and in terms of timing, commonly can be performed within one round-trip 
time. Given this, the RRP only provides a basic level of integrity and authenticity and does 
not establish any secure associations between communicating parties. Moreover, the return 
routability check reduces the chances of spoofing and DoS attacks significantly. RRP is an 
efficient method with the assumption that the attacker has not compromised the routing 
system in any of networks on the way from the sender to the receiver and rather has access 
only to the hosts. [21] 
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3 Some Basics of the Internet 
This chapter is devoted to describing some basic concepts of the Internet including NAT, 
Domain Name System (DNS) and fragmentation. The NAT subsections briefly explain 
why the NAT schemes have been developed and how NAT devices work. The different 
NAT traversal methods are also listed and described in this section. The concept of DNS 
and motivations behind its existence are discussed in the DNS sections. At the end of the 
chapter, the essence of fragmentation, the procedure invoked when the size of packets 
exceeds Maximum Transmission Unit (MTU) of the communication links, is explicated. 

3.1  NAT 

The essence of IP address translation emerges when routing information, specifically IP 
addresses, within a private address realm cannot be advertised in the external networks 
because the same addresses are used in several private realms simultaneously and thereby 
are not valid globally. The Network Address Translation scheme is aimed to interconnect 
disparate address realms transparently. For this purpose, the NAT devices modify the 
packet headers when they are sent from a private address space to the public realm or vice 
versa.  

Primarily, NAT was deployed to reuse the IPv4 address space and thus postpone IPv4 
address exhaustion. In this approach, to extend the IPv4 addressing lifetime, one or a few 
addresses that are reserved for the Local Area Network (LAN) are exploited to 
communicate with the outside world. The hosts residing in the private network, behind the 
NAT device are addressed with private IP addresses which are not unique across the 
Internet.  

NAT works well with the client-server model where end hosts behind a NAT make 
requests to arbitrary severs in the public network. To cite an instance, let us assume a 
scenario where a host in a private realm intends to initiate a connection with a specific 
server. The packet, on the path to the destination, firstly goes through the NAT device. The 
NAT device modifies the source address of the packet field from the host’s private IP 
address to the NAT’s public IP address. This mapping is written into the NAT’s mapping 
table and kept alive for a limited period of time. Next, the NAT device forwards the 
modified packets to the destination server. In the reverse direction, the server sends replies 
to NAT’s public address. If a relevant mapping still exists in the mapping table, the NAT 
device modifies the address fields of the packets correspondingly and delivers them to the 
end host.  
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However, there are a wide variety of NAT devices; the traditional NAT is the most 
commonly deployed type of NAT device. The traditional NAT is divided into two different 
categories: 1) the basic NAT, and 2) the Network Address / Port Translator (NAPT). In the 
basic NAT, only the IP address is mapped while the NAPT translates both IP addresses and 
transport identifiers. A NAT device regardless of its type performs the address binding 
statically with a fixed address assignment or dynamically at a session initiation. 

3.2  Basic NAT 

The basic NAT device assigns a certain range of IP addresses to the local hosts in the 
private address realm when they relay packets to another realm. To be exact, as a host in 
the private domain sends packets to a server in the external domain, the basic NAT which 
sits on the border of these two address realms allocates one of the public addresses for the 
host and changes the source IP address to this value. In the address binding phase, all 
related fields in the packet headers such as checksum that are dependent on the source 
address field must be updated correspondingly.  

3.3  NAPT 

NAPT permits numerous private hosts to be multiplexed into a single external IP address at 
the same time while each session is established with different transport identifiers. To do 
this, NAPT in addition to IP address translation, translates transport identifiers (TCP/UDP 
port numbers, ICMP query ID) as well. In other words, as a local endpoint originates 
packets to an external host, the NAPT maps the internal IP address and the internal 
transport identifier to the public IP address and the public transport identifier. The inverse 
translation is being done for the inbound packets. [43] 

3.4  NAT Address Assignment Behavior  

For knowing NAT’s mapping behavior it is necessary to describe how one or more public 
IP addresses are reused for messages that are originated from a set of internal users and are 
destined to the external hosts. More formally, various mapping practices follow several 
techniques to execute the translation between the pair of private IP address and the private 
transport identifier and the pair of external IP address and the external transport identifier. 
The NAT’s translation principles can be explained as follows.  

Endpoint-Independent Mapping: The NAT only keeps one entry in the mapping table 
for all packets originating from the internal host with the same private IP address and 
transport identifier. These packets further can be routed to any external endpoints. It means 
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that as long as traffic is coming from the same local IP address and port, the corresponding 
mapping does not alter.  

Address Dependent Mapping: There is a single mapping in the NAT table for packets 
being relayed from the same private IP address and transport identifier to the same external 
IP address. The transport identifier of the external destination does not play any role in this 
mapping. 

Address and Port-Dependent Mapping: The NAT maintains different mappings for 
packets being sent from the same private IP address and port to the same external IP 
address but distinct ports. More specifically, as soon as the host with a private IP address 
and port starts conversing with a second public application that either has a different IP 
address or port, the NAT creates a separate mapping for this newly established connection. 
[6] 

3.5  NAT Traversal Issues 

The NAT must manipulate the packet headers at layer 3 and 4 in order to transmit packets 
from one realm to another. Furthermore, an inbound packet can be delivered to the private 
end system only if its addressing information is matched with one of the NAT table’s 
states. Otherwise, it will be dropped by the NAT because it does not have a mapping in the 
NAT table and thereby it is infeasible for the NAT to find a relevant internal destination. 
The NAT traversal issues that are closely related to trust concept are fitted into four 
classes. 

The first issue appears when some protocols (e.g. SIP) include the IP addresses within their 
payload. Since the conventional NAT does not function above layer 4, it fails in a situation 
where a sender resides in the corporate network and uses a locally significant IP address in 
outbound packets’ payload. To overcome this, an ALG, which provides protocol specific 
processing, is proposed as a solution. However, the ALG fails when encryption is used. 
Moreover, for every application protocol, the separate functionality must be implemented 
in the ALG. 

The second area where NAT devices cause difficulties is peer-to-peer applications. In the 
traditional Internet, the predominant communication paradigm was the client-server 
scheme. Consequently, the network address translation scheme was also designed with the 
assumption of asymmetric connection establishment in mind. For this reason, the NAT 
only operates where an internal host in the private realm initiates a connection with a 
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server residing in the public Internet. In contrast to client-server applications, peer-to-peer 
applications require bi-directional connectivity. In other words, in a peer-to peer 
application, the connection can be established by any of the parties and hence there is no 
difference between the communicating peers. This results is a problem in the NAT 
functionality particularly when either one of the hosts or both are located behind NATs. To 
give an example, let us assume that a host in the private network tries to provide a specific 
service for a set of clients. In this scenario, the host is unable to fulfill its clients’ needs 
because there is no mapping for the incoming packets and thus they get dropped by the 
NAT.  

The two first categories described above combine and form the third group. The Bundled 
Session Applications (e.g. FTP, SIP/SDP) uses realm-specific addresses within their 
payload fields for the additional connection establishment. In these applications, the first 
connection is known as a control plane, while the connection established subsequently is 
called data plane. Carrying realm-specific IP addresses in the payload is not the only 
problem here; rather the issue is the data session when it is initiated from the public realm 
to the private realm. 

The last category is related to the unsupported protocols such as the Stream Control 
Transmission Protocol (SCTP) that have been developed recently. The NAT could not 
support these protocols even if a private host establishes the session with an external host. 
This is because the NAT does not have translation functionalities for these protocols. This 
group also encompasses protocols such as the encryption protocols in which the NAT 
cannot access layer 3 or layer 4 headers. [37] 

3.6  NAT Traversal Techniques 

In this section, some of the most deployed techniques for traversing NAT devices are 
explained briefly.  

3.6.1 Session Traversal Utilities for NAT  

Session Traversal Utilities (STUN) for NAT is a protocol that is used extensively by other 
protocols in the context of NAT traversal. A host through this protocol can learn the 
allocated IP address and port number by the NAT. Moreover, it can be used either for 
examining the connectivity between two hosts or keeping mappings in the NAT table 
active for a certain period of time. The STUN operates with a wide variety of NAT devices 
without making any changes in their operation. [41] 
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The STUN is a client-server protocol. As such, it needs a STUN server in the public 
Internet and a STUN specific application installed on all client end systems. Figure 3.1 
demonstrates the message flow in the STUN system.  

                      
                   Figure 3.1: Message flow in STUN [revised] (Virtanen et al. 2009) 

To determine the NAT binding, a private node (PN) that is located behind the NAT sends a 
binding request to a STUN server. The binding request goes through one or more NAT 
devices before it is forwarded to the STUN server. Therefore, the NAT will change the 
source address field of the packet and further add the respective mapping to its table. As a 
consequence, what exactly the server sees as a source transport address in the binding 
request is the public IP address and the port allocated for PN (i.e. GA1:port2) by the 
nearest NAT. This addressing information is named a reflexive transport address. The 
server sends back a binding response that carries that reflexive transport address within its 
payload towards the correspondent PN. After that, PN can advertise its public transport 
address across the public Internet and hence communicate with any external hosts. Note 
however, that depending on the type of NAT, it may be necessary to repeat this procedure 
for each pair of an external communications partner and application. [47]  

3.6.2 Traversal Using Relay NAT 

Typically, the “hole punching” technique is used to find a direct communication path 
between two hosts where a host behind a NAT tries to initiate a session with a preferred 
peer that might be located behind another NAT. This technique will fail if the hosts 
involved are behind NATs that have a special mapping behavior such as "address-
dependent mapping" or "address- and port-dependent mapping".  
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The Traversal Using Relay NAT (TURN) protocol has been proposed to complement the 
limitation of the STUN system for which the direct communication path between two hosts 
cannot be discovered without intervention of any relay servers. The TURN system uses an 
additional network element called relay server to relay messages between two end systems. 
A relay server commonly resides in the public Internet and needs high-bandwidth 
connection to the Internet.  

The TURN similarly to the STUN is a client-server protocol. It allows a client in the 
private realm behind one or more NAT devices to request a public transport address from a 
TURN server and thereby receive TCP or UDP sessions at the allocated address.  

To begin the TURN operation, a TURN client must have the address of a TURN server. 
The address can be discovered by using for example the SRV records or from a 
preconfiguration file. As the next step, the client sends a TURN allocate request to the 
TURN server. The TURN system exploits a digest challenge mechanism to perform the 
authentication and integrity checks for both the allocate requests and the replies. As soon 
as the allocate request has been authenticated, the TURN server gives back an allocated 
address inside the allocate response to the client. The TURN client cannot receive data 
from a peer until it sends a send request message which contains data to the TURN server. 
The server forwards the data derived from the packet to the peer specified by the 
destination field. In the opposite direction, the data received at the allocated address from 
the peer is encapsulated into a Data Indication message and relayed back to the client. The 
simplified TURN operation is represented in Figure 3.2. 

        
              Figure 3.2: Basic message flow in TRUN [revised] (Virtanen et al. 2009) 
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If the TURN client wishes to establish connections to more than one peer, it must send a 
send request message to every peer separately. Besides, the allocated transport address can 
be published to any hosts that wish to communicate with the client. [47] 

3.6.3 Interactive Connection Establishment 

Interactive Connection Establishment (ICE) allows Bundled Session Applications to 
traverse any type of NAT device. More specifically, ICE enables peers to collect the 
adequate information about their topologies and thereby discover their potential 
communication paths by using the STUN and TURN techniques. Each of these paths is 
named a candidate. In addition, ICE is one of the most comprehensive and optimum 
solution among the proposals which have been presented for the NAT traversal problems, 
because it works even under very complicated topologies and makes use of relay only if it 
is needed.  

The main objective of ICE is to discover which pairs of candidates can be used for 
communication by the agents. To do that, at first the agent must collect its candidates. The 
candidates can be separated into three categories. The first category is called host candidate 
and obtained from the local interfaces (e.g. Ethernet).  The second one is server-reflexive 
candidate and the agent gathers them by sending request messages to the STUN server. 
The last category is relayed candidates and they are gathered from the TURN servers. In 
some cases, the TURN server provides both relayed and server-reflexive candidates of the 
agent simultaneously. 

As the agent gathers and prioritizes its candidates based on a certain criteria, it sends an 
INVITE request message to the peer agent. This message carries the agent’s candidates 
gathered before. Upon the reception of this message, the destination agent gathers and 
prioritizes its candidates in the same way. In the next step, it replies to the INVITE 
message with the message that contains its own candidates.  

At this point, each agent knows the peer and its candidates.  Therefore, each agent makes 
different combinations from each of its candidates and each of the candidates from the 
peer. Then, the STUN messages are relayed from one agent to another one in order to 
check the connectivity of each pair of candidates separately. A data session can be 
established between the agents once a point of communication is discovered. [40] 

The disadvantage of ICE is that due to the erratic nature of NATs and packet loss, it uses 
up to 100 messages to select the best candidate pair for one connection. When an 
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application has 2 connections, the maximum is 200 messages. As a consequence, the 
maximum session setup delay grows to tens of seconds. [31] 

3.6.4 ALG 

ALGs are the protocol specific translation components that collaborate with NAT routers 
in order to connect hosts in disparate address realms. An ALG may interact with the NAT 
for several reasons. For instance, it modifies the application specific payload by using the 
NAT state information and thereby allows them to traverse NAT transparently.  

In some cases, ALGs do not exploit NAT state information. Instead, they may evaluate and 
examine the application payload and further ask the NAT to add an extra mapping to its 
table. However, ALGs similarly to proxies provide the application specific processing 
especially for session-oriented applications, but unlike proxies they do not require any 
changes in application clients and also do not interact with clients by using a special 
protocol. [43]  

3.7  DNS Overview 

This section gives an overall picture of the DNS system which is extensively used across 
the Internet.  

3.7.1 The Domain Name Space 

DNS is a distributed and hierarchical database which was originally designed to provide a 
name resolution service across the Internet. Mainly, it is used by end users and various 
Internet services to translate host names (i.e. human readable domain names) into 
numerical IP addresses used to identify hosts. [3] The main component in the DNS 
structure is the name space. DNS name space is a hierarchical tree structure that is 
constructed from several nodes. Each node is associated with a set of resources and has its 
own parent. Additionally, each node has a label whose length can be expanded to up to 63 
characters. The root node unlike other nodes does not have any parent and its label is null 
(zero-length). [48] The absolute domain name for every node is the sequence of labels 
which are read from that node towards the root. An absolute domain name which is also 
known as a Fully Qualified Domain Name (FQDN) must be unique in the respective tree. 
To achieve this, the sibling nodes may not have same labels. In domain names, each node 
label is separated from the following label on the path by a dot. [3]  
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The DNS name space is separated into zones. Each zone has a set of authoritative servers 
that usually appear in two flavors: primary name server and secondary name server. The 
primary name server maintains all the resource records belonging to that zone in the master 
file. This file must be updated by the administrator to make a newly added host to that zone 
globally reachable. In the secondary name server, the zone data is derived from the primary 
server. The data is transferred between authoritative servers by using the zone transfer 
query. [22] 

3.7.2 Resource Records 

The information associated with domain names is held in the Resource Records (RRs). 
Each RR contains the different fields including name, class, type, Time to Live (TTL) and 
data. The TTL field specifies how long the record in a caching server would be valid. Upon 
the corresponding timeout the query must be sent to one of the authoritative DNS servers. 
Also, RRs may present various data based on the given value for the name and type 
parameters. [35] The message structure of resource record is presented in Figure 3.3. 

       
                        Figure 3.3: The message structure of resource record 

For instance, if Type and Name fields are set to A value and a hostname respectively, the 
Value parameter will contain the relevant IP address. Using this RR, the hostname can be 
mapped to the corresponding IP address. The Value field presents the hostname of the 
authoritative server of the domain that is defined in the Name field if the Type parameter is 
NS. The authoritative DNS server is aware of the procedures that should be followed to 
obtain the IP addresses corresponding to the hosts inside the domain. If CNAME is 
assigned to the Type, the Value field has a canonical hostname of the Alias. [27] 

Yet another type of resource record is called Naming Authority Pointer (NAPTR). NAPTR 
usually carries one or more Uniform Resource Identifiers (URIs). A URI is a flexible 
format that is used to identify end users engaging in any type of communication such as e-
mail, VOIP, Instant Messaging (IM) and etc. This enables DNS to perform name lookups 
for a wide range of services. Each NAPTR record holds the list of contacts which is sorted 
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based on the Order and Preference fields. In a case that the list has more than one contact 
address, the client can switch to an alternative address once the destination host is not 
responding through one of the given contact addresses. 

The most common usage of NAPTR is to code rule-sets in the DNS. NAPTR contains a 
regular expression that is used by an application in order to transfer a string into a new 
domain name. Since the regular expressions describe information in an extremely compact 
manner, thus large amounts of data by means of these expressions can be encoded in a 
relatively small DNS message. In a NAPTR record, flags and other parameters supervise 
rewriting and re-delegation operation. [32] 

3.7.3 Resolvers 

The DNS clients named resolvers are used by applications to retrieve information from the 
authoritative name servers. Commonly, a resolver generates a query upon a request from a 
program and sends it to the primary name server. When the resolver receives the DNS 
reply, it derives the required information and eventually sends this information back to the 
initiator application. [3] 

3.7.4  DNS Message Structure 

There are different types of DNS messages including query and response, in the DNS 
protocol. Additionally, there is one more DNS message called DNS update but it will not 
be examined in this thesis. All DNS queries and responses are encapsulated in the same 
format. This format is separated into 5 parts as shown in Figure 3.4. [35] 

                      Identification                                     Flags 

                      Number of Questions                   Number of Answer RRs 

              Number of Authority RRs                  Number of additional RRs 

                                                          Questions 

                                                            Answer Resource Records 

                                                            Authority Resource Records 

                                                            Additional Resource Records 

                   Figure 3.4: DNS message format                                                                                    
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The first part is the header and exists in all DNS messages. This section is 12 bytes long 
and contains several fields such as identification, flags, number of RRs, etc. Identification 
always is generated upon creating a DNS query and identifies the query. It also has to be 
copied to the corresponding response message.   

There are various flags in the flags field. The query/reply flag specifies the type of 
message. The message is a query if this flag is set to 0; otherwise it is a reply. The name 
server sets the authoritative flag to 1 if it is the authoritative server for the queried domain 
name. In a query message, the querying host may set the recursion-desired flag to 1 and 
hence ask the queried name server to perform recursion resolution if it does not have the 
respective record. Also, the recursion-available flag is set to 1 in the case that the DNS 
server supports recursion. As the following parts in the message are variable-length, the 
number of fields determines their length separately. [47] 

The four other sections that come after the header section are encoded in RR format. The 
question section, which uses fields such as query type and query name, conveys a query to 
a DNS server. The answer part may carry one or more RRs that are sent in response to the 
received questions. The authority section includes RRs that refer to an authoritative name 
server. [35] 

3.7.5  Name-to-Address Resolution 

However, DNS provides a large number of services for TCP/IP-based networks, the basic 
idea of DNS is to perform the name-to-address resolution. The purpose of the name-to 
address resolution process is to resolve the IP address of the queried hostname using the 
distributed DNS databases; however, a host does not necessarily have a name. Typically, 
the mapping process takes place when an application running on the host wants to start 
communication with a remote host. [20]  

To do that, firstly a resolver running on the initiator machine sends a DNS query 
containing the remote host name to a local name server that acts as the primary name 
server. If the name server finds the IP address corresponding to the remote host name in its 
DNS database, it simply replies to the querying host with this IP address. In contrast, if the 
referred name server is not an authoritative name server for the zone of the queried domain 
name, its database does not contain the host name. In this case, the local name server 
usually forwards the query to the root DNS server. Currently there are 13 root domain 
name servers across the global Internet. They are authoritative servers for a huge number 
of organizational domains. [35]  
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The resolution process can be carried out in two ways. In the recursive resolution, the root 
name server returns a referral to the second-level name server that is responsible for the 
queried domain name. Upon reception of the reply, the local name server forwards the 
same query message to that server and gets a referral to the next level DNS name server. 
This method is applied over and over until the local name server queries the authoritative 
name server and hence obtains the IP address of the remote host from the response 
message. A recursive name resolution is shown in Figure 3.5. 

                                                                 
                                                  Figure 3.5: A recursive name resolution                                                                     

On the contrary, when the resolution method is iterative, the local name server will not 
query the root name server if it does not have the queried domain name. Instead, it sends 
the query to the closest name server in the name space hierarchy. The request is passed on 
to next-level domain name servers repeatedly until the authoritative name server that has 
the IP address of the requested host name is found and thereby returns the destination’s 
address to the local name server. [20]       

3.7.6 Address-to-Name Resolution 

In addition to the name-to-address resolution there is another resolution process called the 
address-to-name mapping. The queries sent for this purpose are called pointer queries. 
They are usually generated by system programs in order to handle management and 
debugging activities. Furthermore, the email servers and file servers use these queries to 
verify end users.   
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To perform a reverse DNS lookup, the resolver sends a pointer query containing an IP 
address to a name server. Upon the request, the name server returns the host name for the 
given IP address. In the hierarchical structure of the DNS namespace, the domain name is 
used as a search key. Therefore, inverse queries would need to check all domains attached 
to the nodes in the tree to find the requested IP address. As this searching process is 
impractical, the in-addr.arpa domain is defined for inverse queries. In this domain, the 
nodes are labeled with IP addresses of hosts but in the reverse order. The reverse name 
lookup can be performed in a more efficient way by executing a traversal of node 
hierarchy under in-addr.arpa. [20] 

3.8  Fragmentation and Reassembly 

Fragmentation happens when the size of a packet exceeds the MTU of any link along the 
route of the packet. As a result, the router cannot forward the packet due to its size and 
splits the payload inside the packet to multiple smaller segments. Next, each segment that 
is also referred to as a fragment is encapsulated in a separate packet whose length is not 
greater than the smallest MTU of involving networks in the path and further forwarded to 
the destination. [14] On the recipient side, the IP layer reassembles the data fragments 
derived from the incoming packets and thereby reconstructs the original packet. 

A set of fields in the IP header including identification, flags and fragmentation offset are 
defined specifically to facilitate the fragmentation and reassembly operation. The 
identification field has the same value in all fragments, thus the remote host uses this 
parameter to identify each received fragment and relates it to the respective original packet. 
The total length always determines the size of the original packet before fragmentation. 
Consequently, each smaller packet contains the same value in this field. As an additional 
benefit, the IP of the destination host can use this value to recognize whether all fragments 
related to the original packet are received completely or not.  

The offset field specifies the position of first byte of the payload within each fragment 
relatively to the original payload. This field is expressed in multiples of 8 bytes. The flags 
field contains two flag bits: don’t fragment (D-bit) and more fragment (M-bit). When the 
sender sets the D-bit to 1, the routers on the path to the destination host should not 
fragment the packet. The M-bit is set to 1 in all fragments except in the last one. The basic 
idea of the time-to-live field is to detect packets stuck in loops. Also it determines the 
maximum time period a host has to wait for each fragment that might be delayed, 
discarded or corrupted. 
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Despite that the fragmentation operation seems rather easy; it has bad effects on a number 
of protocols. For instance, the TCP protocol generates an acknowledgment message when 
the destination host receives all fragments belonging to the original packet. Therefore, if 
one of the fragments contained within the smaller packets gets lost due to any reason, the 
source host after a certain time period (i.e. specified in the time-to-live field) will 
retransmit the initial packet completely. It results in rapid consumption of the network 
resources and reduction in network performance. To overcome this, in most of the current 
TCP implementations, fragmentation is not allowed. This is done by defining the 
maximum data block size (limit). [20]  

The path MTU discovery can be used as an alternative solution. In this procedure, the 
Don’t fragment bit in the IP header is used to discover the smallest MTU of the links on a 
path. To do that, a sender considers the MTU of its first hop as the MTU of entire path and 
then sends a number of datagrams with the DF bit on towards a destination host. If the size 
of some of the datagrams exceeds the maximum MTU of any networks on the path, the 
router residing in that network will drop them and send back an ICMP Destination 
Unreachable message with a code that means "fragmentation needed and DF set". When 
the initiator host receives these messages, it chooses a smaller value for the MTU of the 
path. Once any of the datagrams is received by the destination host without fragmentation, 
the MTU discovery process completes and the assumed MTU is considered as the smallest 
MTU of the path. [36] 

3.8.1 Incoming Fragmented Packets at NAT Device  

Fragmented packets may be delivered to a NAT in an arbitrary order, depending on the 
packet ordering, network status and implementation of the fragmentation mechanism. 
Upon the reception of fragmented packets, different NAT devices exhibit different 
behaviors. Some NATs only forward the fragments arriving in order. This behavior is 
referred to as "Received Fragments Ordered". In contrast to this, "Receive Fragments Out 
of Order" relates to the NATs that are able to receive the fragments in any order. There are 
NATs in which any fragmented packet is discarded regardless of the receiving order. This 
property is known as "Receive Fragments None". 

Fragmentation has been a target for a number of attacks. More specifically, attackers take 
advantage of either passing fragments through NATs or storing out-of-order fragments to 
launch several attacks. For instance, DoS attacks are likely to happen where a NAT has to 
store out-of-order fragments prior to processing them as a whole message containing all 
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headers. The problem of fragmentation for NATs is that the fragments after the first one do 
not have port information while the NAT depends on it. [5] 

Let us assume a scenario where a malicious user divides a packet into rather small 
fragments so that some fields of the transport header are forced to be carried within the 
second fragment.  Consequently, an illegitimate packet may go through a NAT, because 
the filtering rules that are related to those fields cannot be applied only by knowing the 
initial fragment. This attack is referred to as a tiny fragment attack. To eliminate this type 
of attack, a router can simply impose a specific fragment size limit on incoming packets to 
ensure that the first fragment includes all compulsory header fields.  

The current reassembly implementation of the IP protocol allows each fragment to overlap 
with other fragments which are received before and thereby overwrite over their segments. 
There is an attack called overlapping fragment attack that has been formulated based on 
this weakness. To launch this attack, a hacker generates a number of fragmented packets so 
that the first fragment while carrying a legitimate data could go across a NAT. The 
subsequent fragments that have non-zero offset, might overlap with the previous-received 
fragments and hence change them. This opens up an opportunity for passing unauthorized 
packets through a NAT. [52]  

 

 
 

 

 

 

 

 



 

 36 

4 Customer Edge Switching  
This chapter introduces the main architecture and detailed description of the Customer 
Edge Switching. The chapter initially presents the basic idea of CES and further discusses 
for which reasons this scheme has been proposed. The subsequent section examines the 
CES operation in deeper detail. 

4.1  Objectives 

The CES concept is closely related to the reachability problem that the current Internet has 
due to intervening middle boxes especially the NATs. More specifically, the reachability 
problem appears where a host in a private address realm waits passively for incoming 
sessions from other address realms and wants to be globally reachable. Several proposals 
of which some were explained in Chapter 3.6 have been developed in the context of the 
reachability topic, but still a need for more powerful and efficient solution exists. To meet 
these requirements, the CES scheme has been proposed and implemented in the 
Department of Communications and Networking in the Aalto University. This proposal 
aims to shift the Internet towards a more secure and trustworthy direction. It also enables 
hosts residing in the public Internet to initiate a connection with a remote host in a private 
network behind a NAT. [23]  

4.2  Requirements       

Customer Edge Switching provides global connectivity between hosts that reside in 
different private address realms. The connectivity is based on globally unique names, 
locally or globally significant Identities of hosts/services or users and locally or globally 
unique addresses. An enhancement to state of the art is that a private host can be a server, 
not only a client. A CES is an extension to Network Address Translator. A CES hides the 
addressing of the customer network it serves. The inbound CES is responsible for detecting 
and eliminating source address spoofing. Given that this is effective this makes it 
reasonable for the inbound node to collect evidence of misbehavior of the sender and 
attribute the evidence to the sender’s customer network or directly to the sending host. 
Because the trust requirements of various applications are very different, Customer Edge 
Switching offers a choice of different types of Identities and a set of checks the inbound 
node can make before admitting a new flow. 

CES operates by means of DNS and NAT and acts as a gateway of a customer network to 
the Internet. To be exact, the gateway, containing DNS and NAT functions is the only 
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element where a network is adapted to the CES concept. However, most of the network 
elements including end hosts will not require any changes to interoperate with the 
proposed architecture. Although the Customer Edge Switching architecture reuses existing 
DNS protocols and record types to resolve the addressing of remote hosts, it introduces a 
special configuration of the DNS information. It was also assumed that the core network 
between private networks could be based either on Ethernet or IP. [47] 

Additionally the proposal needs no keep-alive signaling from hosts. In this solution, users 
can be reachable from the public network because of regular network capabilities. It is also 
desirable to fit all necessary network capabilities into regular network elements rather 
using costly add-on servers. Moreover, each address realm can use its own forwarding 
technology such as IPv4, IPv6, carrier grade Ethernet or legacy technologies. [24] 

4.3  Customer Edge Switching Overview      

The CES solution has been proposed to obviate reachability issues that exist in the current 
Internet. It can also be seen as one way of implementing the Trust-to-Trust communication 
model introduced by David Clark [13]. A purpose of CES is to provide global connectivity 
for hosts that reside in private address realms.  

A CES is a replacement and an extension to a NAT. A CES node in addition to the 
fundamental NAT features contains other attributes to resolve the reachability problem of 
private hosts. It allows inbound connection initiations with no need to any keep-alive 
signaling from hosts in the private address space. As described before, only some special 
configuration needs to be made in the existing DNS infrastructure without introducing 
changes to neither the DNS protocol nor the DNS record types. A CES controls the 
reachability and packet admission by applying diverse policies.  

CES helps protecting the hosts from unwanted traffic. In this approach, it is possible to 
point evidence of misbehavior to the sender's network or at least detect RLOC spoofing 
and block the unwanted traffic. This motivates ubiquitous collection of evidence that can 
be further processed automatically for fast detection and blocking of bot machines infected 
by Trojans. 

When user traffic is being transferred through a CES device, the IP address fields in the 
packet headers are modified from private addresses to public ones or vice versa. This 
conceals private addressing from external networks and reuses the private address ranges 
several times. As a result, the address shortage problem of IPv4 mitigates and IPv6 
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deployment becomes less urgent. Furthermore, a CES exploits globally unique domain 
names, private IP addresses and arbitrary type of identifiers to provide global 
communication across the Internet. It maps identifiers to locally significant addresses and 
thereby delivers packets to hosts residing in the customer network. This behavior improves 
trust and security on the address space boundaries. [23] 

In terms of functionality, a CES operates like the tunnel router in LISP [17] especially 
when it is connected to an IP core network. The difference is that instead of End Point 
Identifiers that are actually addresses, CES introduces communications identifiers that are 
never used for routing. It also resembles a realm boundary node in TRIAD [19] 
architecture. The difference can be explained by differences in their routing approaches. 
The CES uses the ID to address translation instead of the source routing used in the 
TRIAD to make the private hosts globally reachable. This mapping is done based on the 
trust paradigm. Moreover, a CES supports powerful procedures including return routability 
checks to filter out unauthorized inbound traffic. [38]   

4.4  CES Architecture 

The CES concept classifies networks into Customer Networks (CuN) and Service Provider 
Networks (SPN). From the IP routing point of view the former are stub networks i.e. they 
do not carry transit traffic on IP layer. The end users may be attached to different CuNs. 
There is at least one CES in every CuN. CES itself has a firewall and a pool of local IP 
addresses for referring to user entities. On the other hand, each SPN encompasses several 
provider edge nodes. To be exact, two separate edge switches associated with different 
owners sit on the boundary of disparate networks. As a consequence, the ownership of the 
network is divided into appropriate blocks. [23] A Customer Network is a trust domain 
served by one or more CES devices. One or more Internet Service providers provide the 
connection from one customer network to another. The ISP networks are seen as one 
federated trust domain. The borders of trust domains conform to the boundaries of network 
ownership. A trust domain provides trust services for its users. User traffic can be tunneled 
over Ethernet core or IP or IP/MPLS core networks. Furthermore, the SPN network 
includes a Directory Service (DS) that may be implemented for example by using the 
DNS.  

In this approach, an end host or a service is identified by an identity (ID) that is created 
from a unique host name by applying hash or alternative internal procedures. The purpose 
is to avoid publishing the private IP addresses across the Internet and thus isolate the 
access, corporate and customer networks from the core network. The IDs can be classified 
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into three different groups: globally unique IDs, locally deterministic 32-bit IDs like in 
LISP and reasonable unique random values. Assurances of the validity of an ID vary from 
privacy protection by the sender’s network to network operator or 3rd party certificates. As 
the source and the destination IDs may need to be changed when special situations such as 
attacks occurs in the network, therefore using globally unique ID is not necessarily easy 
and cost efficient. On the other hand, according to the birthday paradox, it has been argued 
in [23] that the length of random IDs should be from 60 to 80 bits where a customer 
network aims to serve around 1M hosts. As a consequence, an IPv4 address field is not 
long enough to carry a sufficiently unique random ID. Hence, the random IDs may be 
carried in an ID protocol. A CES device or an ID server at the edge of a private network 
uses the locally defined algorithms to generate and manage random IDs. Due to this 
property, the process involving changing random IDs is less expensive than changing 
global IDs. As an additional advantage, this type of IDs can remain invariable while 
packets are crossing a multi-homed interface or end users are roaming into a foreign 
network. The CES concept is demonstrated in Figure 4.1. [38]  

                      Figure 4.1: CES concept 

4.5  Message Flow Across Trust Domains 

The Customer Edge Switching solution reuses the existing DNS infrastructure including 
common DNS protocols and resource record types to implement the DNS server resolving 
names of remote hosts. Thus, if a server in a private realm wants to serve external client 
hosts, firstly it has to register its own domain name in the DNS server. Besides, its NS 
record must point to the authoritative name server of the corresponding customer network. 
[38] 

As Figure 4.2 depicts, a message flow begins with a DNS lookup query from Host A. In 
other words, at first a client program running on Host A sends a DNS query for the A 
record of Host B’s domain name. This message is routed to the DNS server via CES-A. 
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The CES-A acts as an enhanced DNS proxy. Thereby, it first checks whether the queried 
destination host is in the same private network. Then, CES-A picks up the DNS query, 
changes it into a DNS request for the relevant NAPTR record and ultimately forwards the 
modified DNS query to the DNS server. Commonly, the destination’s NS record refers to 
an ID Server hosted by the inbound CES. Therefore, the DNS server passes the request to 
CES-B. [23]        

The addresses of the CES public interfaces are called Routing Locators (RLOCs). An 
RLOC is a public address with a preference and has the properties: order and address type. 
The RLOC types vary depending on the forwarding technologies such as IPv4, IPv6 and 
Ethernet. The preference and order determine the selection of an RLOC from a set of 
active RLOCs. [38] 

CES-B sends back the DNS reply containing its RLOCs and the destination ID to the 
outbound CES. The destination ID is carried in two parts within the reply message: ID type 
and ID value.  

Upon the reception of the reply (the second message in Figure 4.2), CES-A allocates a 
local address for communication with Host B from its address pool. Then, it creates a 
connection state containing the allocated local address, the destination ID and the RLOCs 
referring to the inbound CES. The outbound CES does not forward the original DNS reply. 
Instead, it changes the destination ID to the local address (oc: b) representing the remote 
host to Host A and further returns the modified DNS reply to the local host.  

After the name resolution phase, Host A establishes a connection with the destination host 
using the stored information in the connection state. To be exact, Host A sends a message 
with the local address as the destination address field to the CES-A (the third message in 
Figure 4.2). The source ID can be generated in two ways. It may be derived from a source 
host name and ports. The other option is to allocate an ID by CES. The destination ID is 
retrieved from the corresponding connection state held in the CES. As the next step, the 
packet is encapsulated in the IPv4 packet because the core network runs over IPv4. The 
actual address that is used for routing the packet to the inbound CES is carried in the outer 
header.  

The generated state in CES-A in addition to the destination ID and respective proxy 
address contains the source addressing information and the sender ID. Moreover, CES in a 
similar way to NAT assigns certain timeout to each connection state. [23]  
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Once the message from CES A enters customer network B, the inbound CES allocates a 
proxy IP address representing the sender to Host B. [47] It also creates a state containing a 
mapping from the source ID to the allocated address. The destination ID within the 
message is exploited for the packet access control. More specifically, the inbound CES 
based on the destination ID can make a decision whether the incoming connection is legal 
or not. Furthermore, it maps the destination ID to the destination local address that 
specifies the route to the receiver across the target realm. The simplified process of 
message flow in CES is given in Figure 4.2.  

 
      Figure 4.2: The message flow in Customer Edge Switching architecture [revised] (Kantola et al. 2012) 

The inbound CES obtains the RLOC of CES-A and the ID of Host A upon the first packet 
of the service flow. On the other hand, the domain name of Host A cannot be learned from 
the incoming packets. Therefore, the inbound CES is unable to perform a DNS query and 
discover the additional RLOCs of the outbound CES. A remote-end-on-demand routing 
protocol such as CETP can be used to resolve this limitation. In special cases, the 
destination domain does not return the destination ID and RLOCs within a DNS reply. 
Instead, it refers to a separate ID protocol and ID server. However, using a separate ID 
protocol adds several round trips to the name resolution phase and has bad effects on 
performance. At the same time, it may reduce the risk of eavesdropping substantially. [38] 

From the Host A point of view, CES-A works like a NAT. Generally the difference is in 
admitting communication invitations from external networks where all destinations reside 
in the private network. In general, a CES node operates in a similar way to a traditional 
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NAT except that it provides bi-directional connectivity for private hosts and resolves the 
hairpaining problem in a more efficient manner. [47] 

In the described scenario, the outbound CES may receive several NAPTR records in 
response to the DNS inquiry. This happens when the inbound CES belongs to a multi-
homed stub network and thus has multiple RLOCs. Since the CES only contains a DNS-
like interface, the NAPTR records can be generated dynamically. The outbound CES may 
use a subset of RLOCs identifying the route to the inbound CES in parallel depending on 
the forwarding protocols that are used across the core network and other parameters 
specified in the NAPTR records. 

This approach is compatible with well-behaved protocols like HTTP in which a DNS 
lookup is used for learning the destination identifier and address, whereas it does not work 
properly with the protocols that obtain the destination routing information outside the 
DNS. For each protocol of this type, CES requires a protocol specific state machine. The 
session-oriented protocols including FTP and SIP/SDP are examples of such protocol. The 
protocol specific treatment in CES is relatively similar to what exactly happens in state-full 
firewalls. Moreover, this proposal assumes that emerging application protocols use unique 
domain names instead of IP addresses as identifiers and all destinations seem to reside in 
the private network. Several ALGs for the Customer Edge Switching solution have been 
implemented within other thesis works by Petri Leppäaho and Jesus Llorente. [28], [29]   

When a host residing in a private address realm initiates communication with a public 
server, CES node falls back to the regular NAT behavior. To make this possible, CES 
cannot re-use the global address space for the local communication. For interworking with 
legacy clients, a CES can contain the Private Realm Gateway (PRGW) functionality 
providing connectivity to servers in a private address space. The idea of PRGW has been 
prototyped by Jesus Llorente. [29] 
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5 Customer Edge Traversal Protocol  

This chapter examines CETP that is proposed as a new tunneling protocol in the 
Communication and Networking Department of Aalto University in deeper details. [25] 
The chapter is divided into three sections. The first section discusses the main ideas behind 
the CETP proposal. Next, the chapter describes CETP packet formatting including the 
header fields and the payload segment precisely. At the end, the chapter explains how 
CETP assists the current Internet architecture to fulfill various upcoming demands while 
making minimal changes in network elements. 

5.1  CETP Objectives  

The growth of the Internet to its current size causes a large variety of problems and 
requirements that cannot be resolved by the original Internet architecture. The address 
shortage of IPv4, existence of middle boxes such as firewalls, unwanted traffic, mobility 
and multi-homing are the most common examples of such problems. 

CETP is proposed as a part of an Internet Trust Framework (ITF) which consists of a 
number of Hosts, subscribers, agents of communicating parties called Customer Edge 
devices, ISPs, a Global Trust Operator (GTO) and applications involved in a 
communication. CETP with the other components of Customer Edge Switching aims not 
only to resolves existing problems in the Internet which are listed above, but also takes into 
account future needs. 

The protocol is designed for packet delivery from one CES to another while transporting 
the source and destination IDs. In other words, the purpose of CETP is to tunnel a data 
flow that was originally received from a private host between the network-edges and also 
transport in-band signaling from one customer network to another. More specifically, 
CETP differentiates between the payload and the control signaling. The payload includes a 
tunneled data packet, whereas the control information section contains the signaling 
information that is being exchanged between two CES devices. This type of signaling is a 
step towards the implementation of cooperative firewalls.  

Also, the CES with the help of CETP can be seen as a way of implementing the 
identifier/locator split idea. To make this possible, CETP transports different types of 
identities in the source and destination ID header fields. This method is more flexible and 
scalable than present procedures like HIP that have been proposed to resolve the problem 
of the dual role of address as an identifier and as a locator. 
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CETP collaborates with a CES device to isolate a customer network from the core network 
in terms of technology choices and routing protocols. To facilitate multi-homing and use of 
parallel technologies in the global Internet, the protocol transports a number of addresses 
on the public network called RLOCs. The RLOC types differ depending on the forwarding 
technologies used over the core network. These addresses can be also sorted based on 
preference and order values. 

If a host can run CETP, RLOC spoofing becomes possible. This can be corrected by 
agreeing on a network engineering principle that CETP is always carried over a different 
VLAN in the core network than the plain IP traffic. If this is done, Inbound CES (iCES) 
can be sure that no host can spoof the source RLOC. 

If a CES is compromised and spoofs its RLOC, this can be detected by iCES and the 
destination host will not be disturbed. The condition is that iCES applies a suitable policy.  
The same methods that now apply to tracing address spoofing apply to this case. In this 
case evidence cannot easily be attributed to the compromised CES. 

Due to eliminating the possibility of RLOC spoofing by the sender, a CES can always 
attribute evidence of misbehavior of a host to the source customer network. 

To reduce the chance of ID and address spoofing, CETP provides a range of tools for the 
private networks. CETP places the responsibility of using those tools to the receiver’s 
network. This remarkably enhances trust between two corporate or customer networks 
involved in a communication. Furthermore, the protocol enables a CES node to define and 
apply various policies for each ongoing session. A policy describes the recipient’s 
expectations (e.g. required ID type, etc.) from the sender. In other words, CETP allows the 
inbound edge to specify which ID types must be used to identify a remote host, whether 
protection against source address spoofing is required, whether the CETP control signaling 
needs to be signed to ensure non-repudiation and also whether the integrity of edge-to-edge 
communication has to be preserved by encryption or not. 

The protocol facilitates host IP trace back, assurance of RLOCs and IDs of involved hosts 
and return routability checks on either naming or forwarding level. This provides non-
repudiation of communication and trust enhancement between two communicating 
customer networks. In addition, a trust domain administration using those tools can more 
easily locate malicious senders and attackers.  
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An idea of CETP is to create a shift in the basic communication paradigm used in the 
Internet. The Best Effort paradigm in which the network puts its best effort to deliver 
sender’s packets to the destination is by far the most popular communication model. The 
Publish/Subscribe is another paradigm for communication. In this model, none of the 
published messages would be available for the receiver unless it subscribes to the content 
beforehand. CETP moves towards the Best Effort Communications (BEC) that is a 
synthesis between the classical Best Effort and Publish / Subscribe approach. In the BEC 
model, the network should make its best effort to serve both the sender and the receiver 
and thus balance their interests in the context of communication. To achieve this goal, the 
subscription in the Publish / Subscribe solution is replaced by the policy in the BEC. This 
helps to limit the packet admission based on the receiver’s consent. The interest of the 
receiver means that the recipient only admits packet flows that it wants and are dropped the 
rest. [25] 

The protocol only operates between two CES nodes; therefore the entities residing in the 
access and customer networks are not required to be aware of CETP. Furthermore, CETP 
provides the Trust incident reporting for other ITF components that support the concepts of 
reputation and trust for each Internet entity. [51] 

In CETP, all control information and also IDs are encoded in a TLV (type, length, value) 
format. Using the TLV data formatting addresses flexibility and future expandability. 
Hence, the protocol facilitates implementing extensions.  

As an additional feature, CETP together with the server side PRGW improves the 
procedures that delay the extinction of IP address space for the mobile devices and objects 
in the Internet of Things. As a number of wireless user devices continues to rise, the 
protocol would relieve the IPv4 address space shortage.  

5.2  Requirements 

Within this thesis work, three models for carrying CETP are defined. In the first model, 
CETP is defined as a new Ethertype and then transported in an Ethernet frame over the 
core network. It is also feasible to define a new well known port for the CETP. To be 
exact, in this case, CETP models as a new protocol on top of UDP. Moreover, CETP can 
be directly carried over an IPv4 core network as a new transport protocol like SCTP or 
TCP.  



 

 46 

To make CETP operational, a DNS server must be able to encode a wide variety of ID 
types in existing resource records (e.g. NAPTR record). Furthermore, a CES needs to 
process CETP packet flows in addition to other types of packets. 

5.3  CETP Packet Structure 
The protocol definition given in this thesis is the second iteration that emerged as the result 
of our prototyping and verification work. As illustrated in Figure 5.1, the CETP packet 
structure consists of two separate parts: the CETP header and payload. The CETP header is 
also divided into the compulsory control header and the optional control TLVs. The 
compulsory control header contains a fixed size segment and two variable length fields for 
the sender and destination IDs. Additionally, there is a flag in the compulsory control 
header that specifies whether the optional part of the header carries any TLV fields or not. 
The control TLVs are mainly used for the edge-to-edge signaling that is usually exploited 
by the inbound edge to decide about the packet admission. 

                          
                             Figure 5.1: CETP packet structure 

On the other hand, the data packet received from a private host is encapsulated into the 
payload field. This field always starts at a 32-bit boundary. A CETP packet containing a 
control TLV may have a non-empty payload field. In contrast, if there is no control TLVs 
within the CETP header, a payload must be present in the packet.  

5.4  Protocol Compulsory Control Header       

The CETP compulsory control header structure is shown in Figure 5.2. The compulsory 
control header is made of several fields including Version, Flags (C, R), Header Length, 
Payload Length, Source ID, and Target ID. The Version field indicates the protocol 
version. The Flags parameter consists of two bits: the C and R bits. If the CETP message 
includes at least one control TLV, the C bit must be set to one. On the contrary, the C bit 
would be zero when the CETP packet only contains a payload. The second bit, R bit, is 
reserved for future use.             

             
                                                              Figure 5.2: Protocol header 
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Due to the flexible size of the ID fields, the CETP compulsory control header length is 
variable. Therefore, the Header Length (HL) parameter is defined to specify the header 
length in octets. HL includes the length of the fixed part of header, the source ID, the target 
ID and the optional control TLVs. The total length of the CETP control header cannot 
exceed 2048 octets as HL is limited 11 bits. To be exact, HL is calculated from the 
following formula:  

𝐻𝐿 =  𝛴 (3 + 𝐿𝑒𝑛𝑔𝑡ℎ − 𝑖𝑛 − 𝑇𝐿𝑉 +  𝑇𝐿𝑉 𝑝𝑎𝑑𝑑𝑖𝑛𝑔) +  8 +  𝑆𝑖𝑑𝐿 +  𝑇𝑖𝑑𝐿 
+  (𝑛𝑟𝑜𝑓 𝑇𝐿𝑉𝑠 > 127)   𝑎𝑙𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑇𝐿𝑉𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑢𝑚            (1) 

In the CETP packet, the payload size is given in the Payload Length field in octets.   

5.4.1 Identity Encoding 

The source ID and the target ID are defined via three parts: type, length, and the actual 
identity value. Due to this structure, the ID can have variable length, flexible format and 
various types. The type parameter, which is called SidT for the source ID type and TidT 
for the target ID type, indicates the ID generation algorithm used by the ID server. For 
example, IDs can be random values that a CES generates using internal algorithms. 
Furthermore, CETP by means of mobile operator infrastructure can use globally unique 
mobile operator assured IDs for end-to-end communication. Mobile Operator assured IDs 
can be, for example, MSISDN numbers, IMSI numbers and user certificates that can be 
verified by HSS/HLR. Unlike end-to-end protocols that identify the end hosts with the 
same assured IDs, CETP protects a mobile target device against the DDoS attacks and 
unwanted initial packets that are not carrying the assured source ID type.  

The size of ID value is determined in the Length field which is called SidL for the source 
ID length and TidL for the target ID length in the protocol header. The ID itself fits into 
the value part. There is no limitation on the ID formatting in the current CETP 
specification.  

In the first prototype of CETP, the source and the destination IDs were encoded in a 
similar way to the control TLVs, although in the current specification they are formatted as 
described above to facilitate packet processing.  

5.4.2 Control TLV Format 

It is feasible to separate the control information section from the payload within the CETP 
message structure. The control signaling contains one or more control TLVs and signals 
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control information between two communicating CES nodes residing at the edges of the 
trust domains. The control TLV format is depicted in Figure 5.3. 

           
                 Figure 5.3: Control TLV format 

The control TLV includes three segments: type, length and value. The type field occupies 
two bytes and is represented as follows: 5-bits for flags, 2-bits for group, 7-bits for TLV 
code and a 2-bit operation. The group specifies the high-level type of control TLV, 
whereas the code is more detailed and determines the type of TLV element in the group. 
Table 5.1 presents four control TLV groups. 

Bits (GG)     Control TLV group 

   00     ID types 

   01     Payload types 

   10     RLOC types 

   11     Control information types  

           Table 5.1: Different control TLV groups 

Appendix A presents TLV mnemonics for all existing control information. There are four 
possible operations including Query, Response, Reliable Response and Acknowledgement 
which are defined by means of the operation bits (Q and R bits). In a TLV query, a sender 
asks for a responder’s value for a certain TLV type and then waits for a reply.  The 
response TLV contains the answer (i.e. sender’s value) to the previous query. In this case, 
the responder does not expect an acknowledgement TLV. In contrast to this, the reliable 
response that carries the same information as the response TLV requires an 
acknowledgement leading to a 3-way handshake edge-to-edge. So, query, response and 
reliable response always carry the sender’s value. The acknowledgement may or may not 
carry the receiver’s value. Table 5.2 lists all possible operations. [34] 
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Flags(QR)         Operation                                  Description 

     00 Query TLV query that can also carry sender’s value and 
sender expects a response. 

     01 Response  TLV response provides sender’s value; in this case 
ACK TLV is not expected. 

     10 Reliable  Response Sender expects an ACK TLV from the destination. 
Besides, TLV includes a sender’s value. 

     11 Acknowledgement ACK TLV is sent as an acknowledgement to pervious 
reliable response TLV. It may carry the receiver’s 
value 

           Table 5.2: Possible operations for control TLVs 

Moreover, the type field has compatibility bits (named I and D bits) that specify how an 
unknown or an unsupported TLV type should be processed. To give an example, if both 
the I and D bits are set to zero; the sender asks the receiver to ignore the TLV if its type is 
not understood. Table 5.3 presents a different combination of compatibility bits. The flags 
also contain the extension bits reserved for future use. 

Flags(ID)                                             Description 

    00 If type not understood, sender tells the receiver to ignore the TLV. 

    01 If type not understood, sender tells the receiver to ignore the TLV and send 
a Backoff code in response. 

    10 If type not understood, sender tells the receiver to delete all control TLVs in 
the message. 

 

    11 If type not understood, sender tells the receiver to delete all control TLVs in 
the message and send a Backoff code in response. 

     Table 5.3: List of combinations of compatibility bits 

The length field size varies between one and two octets based on the value of the first bit. 
To be exact, if the first bit is set to zero, the length field occupies one byte while its size 
extends to two bytes in a case that the value of the first bit is one. This is done to optimize 
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the CETP message size as one octet length field is usually sufficient for specifying the 
value length.  

                                
       Figure 5.4: Length encoding for TLVs and IDs                                                         
L = 0 -> 7-bit length (0-127), L = 1 -> 11-bit length (0-2047)                                            

The value is defined depending on the TLV type. The TLV type numbering space 
comprises ID types, payload encapsulations, reachability information, and signaling 
information. The type number space is common between the control signaling and payload. 
As a consequence, it is feasible to address specific information between the planes. It is 
noteworthy to mention, a TLV always is padded up to a 32-bit word boundary, however, 
the padding is not counted in the length field. 

5.5  CETP Control Signaling  

In this section, the format of control TLVs is defined according to the latest CETP 
specification.  

5.5.1  RLOC TLV 

The location of the source or the destination CES device is determined by the RLOCs. 
More specifically, an RLOC is a globally unique address of a given type. Each RLOC 
identifies the route to a CES node. The type specifies one of three currently defined RLOC 
types: IPv4 addresses, IPv6 addresses, and MAC addresses. In the RLOC TLV, the 2-octet 
length field encoding is chosen to keep the alignment of the rest with 32-bit boundary. The 
length is equal to the number of RLOCs multiplied by the size of each RLOC of a given 
type. 

                      
                                     Figure 5.5: RLOC TLV format 
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As shown in Figure 5.5, each RLOC has a preference and order. The RLOCs are ordered 
based on the priority (i.e. combination of order and preference). As a result, the load can be 
distributed between several CES interfaces in a similar way as when order and preference 
appear in DNS address records.  

The outbound CES obtains a set of inbound CES RLOCs and their default states from the 
DNS response, while the inbound CES needs to use CETP in order to learn alternative 
RLOCs for the outbound CES. For a legitimate packet flow, the reachability information 
transported by CETP should match the reachability information obtained from the DNS. 
Furthermore, the communicating CESs can use CETP to monitor and notify changes in the 
reachability information during a session. This can be used to split the load effectively, 
support multi-homing and to report unavailable RLOCs. The pace of monitoring is 
specified by the timeout of connection state.  

If an inbound edge wants to use different RLOCs from the default ones stored in the DNS, 
the current state of RLOCs must be announced to the outbound edge by using the CETP 
RLOC TLV. Additionally, if an ongoing session does not meet the admission requirements 
of the inbound edge, the CES drops all queries originated from that source to eliminate 
network scanning. Depending on the policy, a CES may admit data flows from all 
alternative outbound edge RLOCs. 

When a CES receives a CETP packet containing the sender’s RLOC TLV with 0xFE 
preference value, it should switch to a new remote CES RLOC and update the current state 
of the destination RLOC instantly. Upon an RLOC switchover request, CES has to start 
admitting packets from a new RLOC. Admitting packets for an ongoing session on an 
alternative destination RLOC may be limited to a certain time period in order to make the 
DDOS attacks less likely. The state mirroring from an active CES to a standby CES is 
necessary when a hot swap of a session takes place. If the RLOC to RLOC delays vary 
substantially, a hot swap operation becomes complex. To avoid the performance penalty 
resulting from the state mirroring, the session hot swap may be only applied to the crucial 
and long term flows. 

5.5.2 Timeout of the Customer Edge State 

In CETP, the timeout TLV specifies how long the state of communication can be valid. 
This value will be restarted upon the reception of a message with the same source ID. The 
purpose of the TOUT TLV is to carry the desired timeout of sender’s state information 
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during the negotiation phase. The timeout value is given in seconds. Figure 5.6 draws the 
Timeout TLV format.  

 
    Figure 5.6: Timeout TLV structure  

In addition, an edge node can notify the peer about the removal of outdated state 
information or ID revocation by mean of TOUT TLV with a zero value.  

5.5.3 Cookie TLV 

Cookie TLV encoding, which is illustrated in Figure 5.7, has the same format as other 
control TLVs. CETP defines the Cookie control TLV for implementing forwarding 
protocol level return routability check. 

 
               Figure 5.7: Cookie TLV formatting 

To be exact, upon the first packet of a new flow, the inbound CES does not need to create a 

connection state. This is for reducing the chance of address spoofing. Instead, it can 

postpone the state creation to the next message, sending back a response message with a 

cookie TLV. If the source RLOC has not been spoofed, the outbound edge will respond 

with the same cookie. Once the inbound edge receives the next message with the same 

cookie and thus ensures that the source RLOC is genuine, it admits the traffic and creates 

an appropriate mapping state. In the Cookie TLV, the actual cookie is accommodated in 

the value field while the length specifies the cookie size in octets.  

5.5.4 New ID Type Query and CA Address TLV 

As a result of encoding the ID in the TLV format, both the source and the destination IDs 
can have different types, variable length and flexible format. CETP allows the edge node to 
tell what kind of ID is required to be used as the remote host identifier. Therefore, if an 
inbound edge receives a message with the source ID type which is different from the 
expected type, it creates a TLV query for the desired ID type and sends it back to the 
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outbound edge. Upon the reception of a New ID type TLV query, if the sender supports the 
required ID type, the outbound edge replies with a message carrying the queried source ID.  

The ID TLV has a similar format to other control information. It belongs to the ID types 
group and its TLV-code is initialized by the required ID type for the sender identity while 
the value field in this TLV is always empty. 

In some cases, the new ID type query and the CA address query are sent together because 
the inbound CES requires the validity assurance of the new source ID. However, if the new 
ID is assured by a trusted third party, CA address TLV query is not needed. The value of 
the CA address TLV gives the address (e.g. HSS address) that can be used for executing 
assurance queries.      

5.5.5 Domain Information 

The domain information TLV falls into the control TLV group and its value carries the 
sender’s domain name.  In the current version of CETP definition, there are two main 
usages for the domain information TLV: (1) replying to a reverse DNS query, and (2) 
performing a return routability check on naming level.  

          
        Figure 5.8: Example of reverse DNS query 

In the first usage, as shown in Figure 5.8, once an edge node receives a PTR query from a 
local host, it forges a domain TLV query and forwards it to the peer. If the remote edge 
finds the FQDN corresponding to the queried ID, it will return a domain TLV response 
containing the host domain name to the sender edge. If the ID is matched to multiple 
FQDNs and also the responder edge wants to provide all, each FQDN must be sent in a 
separate TLV. On the other hand, if no FQDN related to the queried ID is found, the 
responder edge may reply with the empty domain TLV. Upon reception of the response, 
the edge node generates a relevant PTR reply using the received FQDN and forwards it to 
the querier.  
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For performing a naming level return routability check, an inbound edge follows a similar 
query/response procedure as in the reverse DNS lookup. The only difference is that the 
inbound CES performs a DNS lookup for the received FQDN. The return routability check 
procedure will be discussed in more detail later.   

5.5.6 Signing CETP Header 

The signature TLV is particularly defined to carry a signed CETP header including RLOC 
TLVs. The purpose of the signature is to prove the integrity of the protocol header and the 
origin of data while transporting across different trust domains. This implies protection 
against identity theft and man-in-the-middle modification of information. To support the 
signature mechanism, the responder CES needs to have its own identity. It also requires a 
registration in a certificate authority (e.g. HSS). Furthermore, the signature must appear 
after all other TLVs as it includes a signed full CETP header (both mandatory header and 
optional control TLVs). 

5.5.7 Reporting Unexpected Messages 

If an inbound edge receives an unexpected CETP message from a specific sender, it starts 
counting these messages. Once the inbound CES receives a given number, N of unexpected 
response messages, the CES deduces that the destination is a victim of a reflector attack 
and it reports the incident to the remote CES by sending a CETP message containing the 
reporting unexpected message TLV. The fact that N is chosen as a limit for the number of 
received unexpected messages prevents the amplification effect. As indicated in Figure 5.9, 
in the control TLV designed for the aforementioned reason, the length is set to M because 
the value carries the first M bytes of an unexpected message.  

 
                Figure 5.9: Unexpected message report TLV 

This TLV is used to report that iCES suspects that it is a victim of a reflector attack and that the peer is being 
used as a reflector. 

On the outbound edge, upon receiving the TLV, the reflector should tighten the policy for 
the incoming flows. For example, CES can eliminate the source address spoofing by 
executing naming and forwarding level return routability checks.  
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5.5.8  Backoff TLV   

There are some error situations in which termination of the connection is required. CETP 
facilitates reporting such conditions by two separate Backoff code TLVs.  The first type of 
Backoff codes relates to the error conditions associated with communicating CES devices 
and local parties. A congested CES, unavailable destination host and unknown connection 
are examples of such problems. Each of these problems is identified by a specific error 
code in the value field. The unrecognized TLV types including unknown and unsupported 
TLV types are reported by another type of Backoff codes. In this case, the value contains 
the unrecognized TLV in addition to the relevant error code. The unknown TLV error code 
is defined for the backwards compatibility with the future definitions of CETP, while the 
unsupported TLV error code indicates a strict policy or absence of some resources. 

5.6  Reporting Unwanted Traffic and Malware 

CETP does not support reporting malware and unauthorized traffic. Instead, other elements 
of ITF provide such reporting. There are two main reasons behind this design decision. 
First, detecting unwanted traffic and malware is a time consuming process and needs 
deeper packet inspection; therefore it is possible that the connection has been terminated 
before completing detection operation. Moreover, such reporting can be seen as a source of 
numerous security weaknesses such as badmouthing innocent hosts. So, we assume that 
instead of reporting evidence of misbehavior directly to the sender that may be 
compromised by a Trojan, the evidence should be aggregated and validated first by a trust 
management system. It will then be up-to the trust management systems to take action 
against the misbehaving host. 

5.7  Payload in CETP 

In the current version, the payload CETP uses two types of encapsulations: a minimal 
encapsulation of IPv4 payload and an Ethernet frame for a tunneled raw IPv4, IPv6 or 
other packets. In the payload part, the type contains the group bits and the payload TLV-
code but no other flags. Thus, a negotiation for the payload encapsulation type must be 
performed by control TLVs. The control TLVs used for this purpose have a similar format 
to other control information and the control TLV-code is always set to sender’s preferred 
payload type. It is important to notice that TLV’s value in these signaling information does 
not offer any additional information to the peer. In other words, it is always empty.  
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5.7.1 Header Compression for IPv4 Payload 

This encapsulation type resembles RFC-2004 (i.e. Minimal Encapsulation within IP) and is 
used in the case of IPv4 core network. The basic idea of Minimal Encapsulation is to 
reduce the header overhead resulting from tunneling. Since the destination IP address is 
derived from the mapping information with the help of the destination ID, this field is not 
present in the compressed IPv4 header. Figure 5.10 illustrates the IPv4 header compression 
format. Upon reception of a payload with IPv4 encapsulation at iCES, the IP header 
parameters are generated as follow: 
Version = 4, IHL =20, Type of service – based on the local policy, Total length = Payload length + 
16, Fragmentation cannot be supported, TTL = core IP TTL – 1, Protocol = copied from the 
original IP packet, Header Checksum – calculated locally, Source IP address: allocated by CES 
locally, Destination IP address – mapped by CES based on the connection state 

 
     Figure 5.10: IPv4 header compression format 

5.7.2 Ethernet Encapsulation for any Payload Protocol    

CETP can carry any payload protocols that are transported on top of Ethernet. To achieve 
this goal, a new Ethertype for CETP is required. This encapsulation may be used to 
generate nested CETP messages. In other words, a CETP packet may contain another 
CETP message within its Ethernet payload. The structure of Ethernet payload is presented 
in Figure 5.11. 

 
                     Figure 5.11: Ethernet encapsulation structure 

The Ethernet encapsulation provides means for CETP to support fragmentation. Currently, 
the CETP header does not have any fragmentation fields. Instead, it handles packet 
fragmentation by switching between the payload types without adding the overhead of two 
byte fragmentation field in the header. More precisely, when the length of the data packet 
originated from a private host exceeds the MTU threshold and the DF bit is off, the CES 
fragments the packet into smaller portions and puts each segment into a CETP Ethernet 
payload. The experience of CETP usage will tell whether this kind of support for 
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fragmentation will be enough or a new payload format that would support fragmentation 
will be needed after all.  

5.8  Security Mechanisms Implemeneted with CETP 

In the Customer Edge Switching architecture, a CES makes the decision whether the 
incoming packet is legitimate and should be delivered to the destination host or not. The 
main result of this mechanism is establishing trusted communication between two 
endpoints. To achieve this level of trust, CETP offers a range of tools and procedures to 
CES devices. Some of these security mechanisms are listed in Table 5.4 and described in 
the following subsections. 

Security Threat Counter measurement implemented with CETP  

ID theft Signature, executing assurance query via CA address TLV  

Eavesdropping,             
Man in the middle attack,               
Data modification,  

Signature 

IP(ID) spoofing, 
spamming, SYN flooding                         

Return routability check on naming and forwarding level 

DDoS attack Reporting attack via reporting unexpected message TLV    

               Table 5.4: Trust mechanisms of CETP 

5.8.1 Return Routability Checks 

Most of the protocols used across the Internet do not require authentication and 
confirmation of identity from senders. A malicious sender takes advantage of this breach; 
uses a spoofed address as its routing address and bombards the destination with 
unauthorized packets. Consequently, the receiver’s resources are exhausted quickly and 
legitimate packets cannot be processed by the receiver.  

CETP offers Return routability checks on naming and forwarding level as an effective 
procedure to detect packets with the spoofed source address or ID. In this approach, the 
receiver edge before accepting communication, checks whether the sender is accessible at 
the claimed address or not. CETP exploits control TLVs including cookie and FQDN to 
implement the return routability check mechanism. 
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When an inbound CES receives a first packet of a new flow, it may perform return 
routability check either on naming or on forwarding level. For performing naming level 
return routability check, the inbound edge requests the domain name of the initiator with 
the domain information TLV query and gets the sender’s FQDN in the TLV response.  
After that, the inbound CES performs a DNS lookup for the received FQDN and retrieves 
all outbound edge’s RLOCs. Then, it examines whether the sender routing information in 
incoming packets matches to one of the RLOCs derived from the DNS response. The 
described scenario is drawn in Figure 5.12. 

         
                             Figure 5.12: Example of return routability check on naming level 

The cookie mechanism in CETP can be seen as one way of performing a return routability 

check on forwarding level. We borrow the cookie mechanism from SCTP that supports the 

cookie mechanism. In TCP it is possible to use light weight cookie mechanism; the 

receiver may drop the first SYN and generate a special 32 ISN (initial sequence number). 

When the receiver gets an ACK with a valid ISN it can create session state. Host 

implementations of TCP cannot interoperate with this technique, so the outbound and 

inbound CES will have to hide its use from hosts.  

         
Figure 5.13: Example of forwarding level return routability check 
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In this approach, as shown in Figure 5.13, the querying edge sends a cookie TLV with the 
reliable response operation (QR=10) towards the outbound CES and then in the next 
message from the remote edge it  expects to receive an acknowledgement TLV (QR=11) 
containing the same cookie. 

5.8.2 State Management 

Upon reception of a new legitimate flow, the inbound edge creates a connection state. Each 
communication state depending on its timeout can be active for a specific period of time. 
The state’s timeout will be restarted once CES receives any packet with the ID stored in 
the state. On the other hand, the state entry will be removed if no relevant packets are 
received within the timeout.  

Removal of outdated state information is signaled and synchronized between CES devices. 
In other words, when the timeout of state information expires, the CES deletes the state, 
informing the peer about the state expiry and requests the removal of the corresponding 
connection state by sending a timeout TLV with a zero value. The remote edge removes 
the corresponding mapping state upon the notification message and if it is still interested in 
continuing communication, it has to perform a DNS lookup and establish connection again. 
The edge node should also consider that the destination ID may have been changed after 
the connection abortion. Typically, the local host is informed about the removal of 
connection state.  

5.8.3 ID Management 

Due to the flexible format of IDs in CETP packets, two endpoints can negotiate about the 
types of ID that must be used by the other end. To perform an ID negotiation, an edge node 
creates a TLV query for the required ID type and directs it to the peer. On the other end, if 
the queried ID type is supported by the sender, the next message is built with the requested 
source ID. Upon the first message with a new ID, if all other requirements are also met by 
the remote edge node, the inbound edge creates a new connection state and delivers the 
data packet to the destination host. In the described scenario, using a cookie TLV for return 
routability check and CA address TLV for assurance queries are optional. The example of 
a new ID type query at the beginning of a new flow is illustrated in Figure 5.14. 
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Figure 5.14: Changing ID type example 

In addition, an ID can be revoked for example if an identity theft has been detected by a 
trust domain. For the ID revocation, a CES in a similar way to the removal of outdated 
state information will send timeout control information with a zero value to the remote 
end. 

5.8.4 Signature 

A plain text return routability check that is used for detection of source RLOC spoofing 
cannot disclose a stolen RLOC from a compromised ISP network. In other words, when an 
inbound edge uses the plain text routing addresses of a sender e.g. RLOCs for return 
routability checks, hijacking of RLOCs is still possible in compromised networks. This 
security weakness can be a target of several attacks. To avoid such incidents and attacks, 
the RLOC TLVs can be signed cryptographically.  

5.8.5 Reporting Attacks 

Upon attack detection, the trust domain can report the problem to the concerned party if the 
party is unlikely to be compromised. Let us consider a reflector attack as an example. To 
launch a reflector attack, a type of DDoS attack, an attacker takes control of a host in order 
to send legitimate queries towards the reflector’s address. The hosts that are not 
compromised and send messages to the victim are known as reflectors. The compromised 
host accomplishes this by spoofing the victim’s address as the source address into 
legitimate packets that it sends to the reflectors. The reflector only replies to messages with 
the spoofed IP-address of the victim according to protocol principles.  An example is 
sending DNS queries with spoofed source addresses to the reflector. To counter this, an 
inbound edge may report the unexpected messages to the reflector. However, it does not 
make sense to report anything to an attacker that is under the control of a Trojan. Upon 
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reception of the unexpected message report, the reflector should tighten the policy for 
incoming flows. For example, the outbound CES can counter source address spoofing by 
executing naming and forwarding levels return routability checks. 

5.8.6 Policy Control of CETP 

On an inbound edge, a customer network can decide whether the incoming packet is 
eligible or not. To be exact, the trust domain requires certain information from the remote 
edge before admitting a new flow. These requirements are defined in a policy. A policy 
specifically defines the information that can be offered to the peer, the required source ID 
type, the required checks that need to be applied before establishing a connection and the 
state information that must be maintained for the duration of the session.  

In most cases, a network administrator controls such admission policies in a similar way to 
the current firewall policies. However, it is desired that the policy associated with flows 
from / to a specific end user can also be managed by the end system. Controlling policy by 
end devices has its own security challenges and problems. Furthermore, the packet 
admission rules can be changed dynamically as a function of hostile activity using the 
information about suspected or detected attacks or according to the trustworthiness of the 
source and the destination ID. 

Since the focus of CETP is on receiver’s interest, it leaves to the inbound edge node to 
control packet admission. An admission policy can be controlled at least in two modes: lax 
and strict. In the strict mode, the inbound CES would usually reply minimally to the 
outbound edge queries and also does not deliver data packets destined to the private host 
before the peer responds to all its requirements. Compared to strict packet admission, the 
inbound edge with a lax policy offers more information to the initiator edge and forwards 
the packet to the target end device even before successful negotiation. An example of 
successful flow with the lax and the strict admission policy are given in Figure 5.15. 
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      Figure 5.15: Example of successful flow with the lax and the strict admission policy 
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6  Principles of CETP Policy Processing   

This chapter is dedicated to describing the CETP policy management framework. The 
chapter first explains the different components that are developed for policy control of 
CETP. Later in this chapter, some of the algorithms used for enforcing principles of CETP 
policy processing are examined in more details.  

6.1  Policy Control of CETP  

A CES can apply a wide range of policies to a data flow depending on the role of the CES 
(i.e. inbound or outbound), the source and destination ID types, destination port number 
and desired strength. The strength parameter enables the CES to apply more strict policy 
when the respective network is under attack or the peer endpoint is recognized suspicious 
based on the information gathered about suspected or detected attack attempts. However, 
in this prototype, the policy initialization is simplified and the policy for each new 
connection is initialized only according to the role of CES. More precisely, each host in the 
private network has separate admission policies for incoming and outgoing connections. 
Thus, upon reception of a flow associated to the host, a CES enforces the policy 
corresponding to that host considering the direction of the connection. Each control TLV 
belongs to its own interaction. CETP allows many types of interactions such as query –
 response, response, query - reliable-response – acknowledgement and reliable-response -
 acknowledgement. Table 6.1 lists different types of interactions. 

                      Interaction                     Description 

Query - Response With this interaction a sender asks for a control TLV and a 
responder replies to the query.  

Response With this interaction a sender offers its control TLV. 

Reliable-response - Acknowledgement With this interaction a sender offers its control TLV and in 
response a receiver has to send an acknowledgement upon 
reception of the TLV. 

Query – Reliable-response – 
Acknowledgement 

 

With this interaction a 3-way handshake for edge-to-edge 
signaling is implemented. A sender asks for a control TLV 
and a responder replies to that query. At the end, a sender 
has to acknowledge reception of the TLV. 

Table 6.1: Different types of interactions 
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In addition, the communicating peer nodes must follow a set of principles (named policy 
constraints) so that their policies can be matched and they can communicate with each 
other.  In other words, policy constraints define rules that limit the acceptable and feasible 
policies of involved parties. Some of policy constraints that the prototype takes into 
account during policy processing are: 

• Since the policy control of CETP focuses on fulfilling the receiver’s needs rather 
the sender’s requirement, an inbound CES does not reply to the sender’s queries 
before its own requirements are met by the outbound CES. Thus, if the sender 
cannot continue conversing with the peer before accessing certain control 
information of the receiver, it must repeat its demands in a following message.   

• Each edge node must access to at least one RLOC type of the common RLOC types 
determined by the peer.  

• The peers must support a common payload encapsulation. 

The policy control of CETP is implemented through three classes: PolicyEngine, Policy 
and FSM (Finite State Machine). 

6.2  Policy Class  

Each policy is determined using a number of policy vectors. Each policy vector defines an 
aspect of policy for one or more TLV types. In other words, it specifies how each TLV 
type should be handled and processed. In this class, a policy is defined by the following 
policy vectors: 
Role- It is assumed that the policies that the CES applies to incoming flows are different 
from the ones associated with outgoing connections. Hence, this vector specifies the role of 
the CES enforcing that policy. 
ID-Reqc- This field defines what kinds of ID types identifying the peer host are acceptable 
from the perspective of the private host.  
Reqc- This vector identifies certain control information (e.g. FQDN) that a home CES 
requires from the peer edge before admitting a new flow. 
RR-Reqc- This vector includes TLV types that a CES offers and requires a reliable 
response operation and thereby expects to receive an acknowledgement from the peer. 
Offerc- This vector defines TLV types that CES can offer or solicit to the peer particularly 
at the beginning of a session.   
Available- This field indicates TLV types that are allowed to be offered to the peer upon 
requests. 
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As described before, policies are processed differently on inbound and outbound edges. To 
calculate acceptable policies, we focus on the negotiation phase prior to connection 
establishment. On an outbound edge, a sender host can be identified with the four ID types 
(Random, FQDN, MOC and MAID) and also can decide whether to provide a required ID 
type for the peer (6 choices). An outbound CES can reply to control TLV queries in five 
different ways: ignoring a query, sending a Backoff code with the response or reliable 
response interaction, providing its information with the response or reliable response 
interaction.  For offering each control information, both outbound and inbound CESs have 
five options: not offering, offering its control information with response or reliable 
response, querying a TLV type with or without soliciting its own information. A receiver 
same as a sender can be identified with the four ID types and also can ask from a sender to 
change its ID (54 choices). With the current CETP specification (including eleven control 
TLV types), the number of possible policies is calculated as follows: 
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑂𝑢𝑡𝑏𝑜𝑢𝑛𝑑𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠 2,29𝐸 + 15 = (𝐼𝐷 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 24) ∗ (𝑜𝑓𝑓𝑒𝑟 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 510) ∗
(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 510)(1) 𝐴𝑛 𝑜𝑢𝑡𝑏𝑜𝑢𝑛𝑑 𝐶𝐸𝑆 𝑐𝑎𝑛𝑛𝑜𝑡 𝑠𝑒𝑛𝑑 𝑎 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑤𝑖𝑡ℎ 𝑖𝑡𝑠 𝑐𝑜𝑜𝑘𝑖𝑒.     

𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐼𝑛𝑏𝑜𝑢𝑛𝑑𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠 1,13𝐸 + 09 = (𝐼𝐷 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 58) ∗ (𝑜𝑓𝑓𝑒𝑟 𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠 510 ∗
2) ∗ (response policies 1) (2) 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐𝑜𝑜𝑘𝑖𝑒 𝑐𝑎𝑛𝑛𝑜𝑡 𝑏𝑒 𝑞𝑢𝑒𝑟𝑦 𝑜𝑟 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒.               

6.3  FSM Class   

Upon reception of the first packet of a new flow, a CES usually creates one instance of 
FSM for that connection. This object holds the current state of the ongoing session, the 
policy associated with the connection, previously sent TLVs towards the peer CES, list of 
control TLVs received from the sender edge and pending TLVs that should be returned to 
the peer as soon as the data packet is received from the local host. Furthermore, each FSM 
has several timeout parameters though they are not implemented in this thesis and were left 
for future implementation. Table 6.2 lists all timeouts that are defined in the FSM class. 

   Timeout                            Description 
    timeout_p                         oCES timeout for pending state. 

    timeout_on                            oCES timeout for ongoing state. 

    timeout_CA                     oCES/iCES timeout for CA response. 

    timeout_ka              keep_alive interval of CES whose timeout is longer.  

          Table 6.2: List of FSM timeouts and their description 
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6.4  Policy Engine Class  

This class plays the main role in controlling the policy of CETP flows. When the CES 
prototype receives a packet, it examines whether the packet is to/from a legacy host or 
to/from a host behind another CES node. Moreover, each ongoing session may go from 
one phase to another occasionally. If the packet is related to CES-to-CES communication, 
the respective method in the policy engine class is invoked.  

       

CES-to-CES 
communication 

received by policy 
engine

Initiating a new 
flow

Receiving a 
new flow 
attemp

Pending 
session

Create_oFSM Create_iFSM Process_pending_
state

Return Packet

Ongoing 
session

Process_ongoing_
state

Yes

Yes Yes

NoNo No

Yes Yes

 
                 Figure 6.1: Policy engine Algorithms 

Figure 6.1 shows how the policy engine behaves in the differing phases. On the outbound 
edge, the CES must initiate a flow upon a request from a local host while an inbound edge 
has to process flow arrivals. The state of the session is set to pending when the home CES 
cannot guarantee that the peer would respond to the sent message or not. Once the 
outbound edge responds to all queries sent by the inbound CES and thereby fulfills all 
destination hosts’ needs, the inbound session goes to the ongoing state. Upon reception of 
TOUT TLV with zero value, the state of the incoming or outgoing session changes to idle. 
In addition, if the CES receives a query for changing the ID type of the local host, it sets 
the state of the corresponding session to pending. It is noteworthy to mention that an 
outgoing session will go to the ongoing state even if inbound CES does not fulfill its 
requirements. The reason is that we assume that the connection is established based on 
receiver’s interests rather than sender’s consent. Figure 6.2 illustrates the finite state 
machine of the policy engine. 
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   Figure 6.2: Finite state machine of policy engine 
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In this thesis, the DNS lookup for CES-to-CES communication is performed in a similar 
way to the first version of the prototype. The only difference is that when the prototype 
receives the DNS reply from the authoritative server, unlike the original prototype, it does 
not forward the message to the initiator local host. Instead, it buffers the DNS message and 
further starts negotiating with the peer edge. If the inbound edge verifies the legitimacy of 
the sender host and the connection is set up between the two edges, the outbound CES 
returns the DNS reply to the corresponding private host. After that, the host begins 
dispatching data packets towards the destination. This model is named postponing DNS 
message. The clear advantage of this model is that it avoids the need for buffering packets 
during the negotiation phase. This procedure is effective especially when the size of data 
packets sent by a local host is large (e.g. Video frames) and buffering packets would 
require a large amount of memory. Since the inbound edge does not deliver data packets to 
the destination host before the negotiation is completed successfully, an outbound edge 
would have to store data flows from private hosts during the negotiation phase, otherwise 
they would be dropped by the peer edge and negotiation as promised in the protocol could 
not be transparent to end points anymore. 

Before implementing the postponing DNS message model, in an early version of the 
prototype, a DNS reply was forwarded to a querier preceding the negotiation phase. For 
avoiding problems that emerged due to buffering data packets, we decided to implement 
the postponing DNS message model rather than the original procedure.   

In the initialization phase, the CES prototype derives the information related to each 
private host including its identifier and policy number pointing to the specific admission 
policy from the configuration file. This file also presents the list of policies with arbitrary 
policy vectors. The prototype stores these policies using policy class objects. Each packet 
admission policy has a unique number and a private host based on its policy number is 
linked to a certain policy. Furthermore, as described before, this prototype does not use the 
public key infrastructure. Instead, the peer CES’s certificate and home CES’s private key 
are given in the setting file. 

6.5  Auxiliary Methods in Policy Engine Class 

The policy engine uses a number of generic algorithms in addition to the methods 
performing the actual policy processing. They help the policy engine with creating the full 
requirements, processing and replying to the control information from the peer, creating 
cookie and checking cookie. Each of these methods will be explained in detail later. 
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6.5.1 Policy Engine Algorithm for Creating Full Requirements 

At the beginning of the negotiation, each edge node depending on its policy declares the 
required information from the peer within the CETP control TLVs field. The edge node 
requests this control information in order to verify the validity of the peer. In this phase, it 
may also offer some information about itself such as its signature to the peer. The CETP 
packet whose control signaling is initialized in this way is called the full requirement. To 
make such a CETP control signaling, the policy engine uses the Creating Full Requirement 
algorithm. Figure 6.3 draws the process of creating a full requirement.  
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       Figure 6.3: Creating full requirement algorithm 

This algorithm first iterates over the Reqc list of given policy and then for each TLV type 
in the list determines whether it is also present in policy’s Offerc list or not. By this 
procedure, the appropriate parameters for each required TLV type can be defined and 
further added to the CETP TLVs list.  If the TLV type in the Reqc list is also found in the 
Offerc list, it means that the edge in addition to inquiry for that control information is also 
willing to offer its own information in the TLV’s value field; otherwise the value part of 
the TLV is empty. 

After adding all required TLV types to the CETP control signaling, it comes to add the 
information that is going to be solicited by the sender in the full requirement. To do this, 
the TLV types in the Offerc list are retrieved one by one and checked whether they are also 
in the Reqc list. If not, the algorithm examines whether the TLV type exists in the RR-
Reqc list of the policy or not. If it is found in that list, the TLV’s operation is assigned to 
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reliable response in order to tell the peer that it expects an acknowledgment for that TLV; 
otherwise the operation of the TLV is set to response. In both cases, TLV’s value field 
contains the home CES information for that specific type. It is important to notice that if 
the TLV type is present in both the Reqc and Offerc list, there is no need to add a separate 
TLV for each query and offer operation. Instead, the policy would be applied by a single 
TLV field with the query operation and the value segment carrying the sender’s value. 

6.5.2 Policy Engine Algorithm for Processing Control Information  

When the policy engine receives a CETP packet from the peer edge, it has to process the 
control signaling and payload separately. 
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           Figure 6.4: Policy engine algorithm for processing of CETP control information 

For processing control TLVs, the policy engine uses the procedure which is illustrated in 
Figure 6.4. This algorithm first retrieves each control TLV of the CETP TLVs field and 
checks the TLV’s value. If it is not empty and its operation is not acknowledgement, a 
certain operation is invoked based on its type and operation. 

If the TLV type is CA address, an assurance query may be performed using the address in 
the value segment to validate the remote edge’s certificate, however, this functionality is 
not implemented in this thesis work and left for future work.  

Assuming the TLV type is not CA address, the algorithm checks whether the type is TOUT 
or not. If yes, the Process TOUT procedure is called. This method first checks the role of 
CES. If the role of CES is outbound, the TOUT value is examined. This is done because if 
iCES accepts oCES TOUT, this opens vulnerability. Since the peer edge sends the TOUT 
TLV with zero value to notify connection termination, thus if the value is zero, the 
algorithm removes the corresponding mapping information and stops processing the 
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remaining control TLVs. On the contrary, if the TLV’s value is not zero and is also greater 
than the local timeout, the connection state’s timeout is set to this value. The described 
algorithm for the TOUT processing depicts in Figure 6.5. 

      Figure 6.5: Policy engine algorithm for TOUT processing  

If the TLV type is neither CA address nor TOUT, the algorithm checks whether it is 
domain information or not. Assuming the TLV type is FQDN, the control information is 
handled by the Process Domain Information algorithm which is visualized in Figure 6.6. 
The method first tests whether this domain information is received in response to the 
previously sent FQDN query which was forged upon the PTR query from the local host. 
This is done by checking the DNS query list that maintains all unanswered DNS queries. If 
the relevant PTR query is found, the PTR reply with the received domain information is 
generated and sent back to the private host. In contrast, if no PTR query matches with the 
FQDN TLV, the offered domain information is used for naming level return routability 
check. To do this, the algorithm executes a DNS query using the domain name and 
compares the remote CES’s RLOCs obtained from the DNS reply with what the peer edge 
claims as its address in the source address field. If the sender address does not match with 
any RLOCs in the DNS reply, it means that the source address is spoofed and the 
connection must be terminated. In the developed algorithm, it is assumed that a DNS 
server always replies to the sent queries, however if any DNS responses are not received 
upon queries, the algorithm goes to a deadlock state. 

                  
Figure 6.6: Policy engine algorithm for domain information processing 

If the TLV type does not match with any of the previous control TLV types, the algorithm 
examines whether it belongs to the RLOC TLVs category. If the answer is positive and 
there is a corresponding mapping state in the connection table, each RLOC in the TLV’s 
value segment is stored in the connection state as an alternative address identifying the 
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route to the peer. The peer’s RLOCs in the connection state can be sorted based on their 
preferences and orders; however, this prototype does not sort RLOCs using these priorities 
as multi homing and hot switchover are not implemented and thereby there is no need to 
change  the destination’s RLOC during a session. 

If the TLV type does not pass the RLOC type test as well as other described control 
information, the algorithm checks whether it falls into the payload type negotiation TLVs 
or not. If it does and the home CES supports the peer’s preferred encapsulation type, this 
payload type will be used by the CES for encapsulating the future data flows.  

6.5.3 Policy Engine Algorithm for Signature Verification 

The policy engine invokes the Signature Verification algorithm in order to check the 
legitimacy of the peer’s signature. This algorithm that is presented in Figure 6.7 first 
generates the MD of the CETP header in a similar way to the signature generation 
operation. Then, it verifies the validity of the signature using the peer’s public key. If the 
signature is not validated, it means that the CETP header is modified and signed by a third 
party. As a result, to protect the customer network against MITM and DDoS attacks, the 
connection would be torn up. The local edge may notify the remote edge about the 
connection termination by sending a TOUT TLV with a zero value. However, this 
notification message opens a way of scanning for malicious users; in the developed 
prototype it is always sent upon connection terminations for debugging purposes. 
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                Figure 6.7: Policy engine algorithm for signature processing 

6.5.4 Policy Engine Algorithm for Replying to Control Information  

After processing the control information of the received CETP packet, the policy engine 
starts making responses to each control TLV carried in the CETP control signaling.  

The algorithm used in the policy engine for this purpose is shown in Figure 6.8. This 
method, same as the previously described algorithm, iterates over all received TLVs in the 
CETP TLV field and for each one of them builds an appropriate control TLV reply based 
on the session’s policy, TLV type and operation. As the policy engine exploits separate 
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procedures for handling the ID type negotiation process, thus the algorithm ignores 
replying to the control TLVs sent for the ID negotiation.  
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                   Figure 6.8: Policy engine algorithm for replying to control information                 

It is likely that the old versions of CETP do not know about the future modifications. 
Therefore once a new feature is added into a new edition of CETP (without changing the 
version number), its treatment by old editions should be specified by the ID bits that are 
understood by all CETP versions. To add backward compatibility to the protocol 
processing, this algorithm checks whether the TLV type according to the latest CETP 
specification is known or not. If the type is unknown and the peer edge asks to be notified 
about unknown TLV types via setting the D bit in the CETP header, the algorithm adds the 
Backoff code 2 (and error code = 1) which is defined for this sort of error conditions to the 
control TLV reply list. However, this prototype regardless of the D bit’s value returns the 
Backoff error code when unknown TLV type is detected. This is done to ease tracking 
negotiation messages and debugging. Assuming the TLV type is unknown and the Backoff 
code is already added, the algorithm examines the value of the I bit in the packet header. If 
the bit is on, the algorithm aborts the control information processing and does not provide 
any replies to the received CETP control signaling. In contrast to this case (i.e. I bit is 
zero), the next TLV would be derived and processing starts from the next TLV. 

On the contrary, if the TLV type is recognizable based on the current CETP version, the 
procedure exhibits various behaviors considering the TLV’s operation. If the operation is 
query, the algorithm checks whether the home CES according to the policy’s Available list 



 

 73 

is allowed to offer the required information to the peer or not. If the answer is yes, it 
examines whether the TLV type is found on the policy’s RR-Reqc list or not. If it is found 
in that list, the TLV’s operation is set to reliable response; otherwise the TLV’s operation 
is assigned to response. In both cases, TLV’s value field is filled with the home CES 
information for that specific type. On the other hand, if the CES could not offer the 
requested information, the Backoff code 2 (and error code = 2) that aimed for unsupported 
TLV types is added to the reply list. 

Assuming the TLV type is known and the operation is not query, the algorithm checks 
whether the operation is reliable response or not. If yes, the TLV with the acknowledgment 
operation and the same as received TLV’s value is added to the reply list. It is worth noting 
that in this prototype, the inbound CES does not return any reply to cookie with the reliable 
response operation. 

6.5.5 Policy Engine Algorithm for Cookie Generation 

As a cookie TLV is generated and also checked by the same edge node, each 
communicating party can have its own internal algorithm for cookie generation. In this 
prototype, a cookie is produced as follows. First, the expiry time is calculated by 
incrementing the current time of the system by 5 minutes. Next, the identity of the 
destination host is concatenated with the string constant named SECRET and further the 
resulting string is given as an input to the MD5 hash function. Then, the constant string 
namely VERSIONofSECRET, the generated hash value and the expiry time period are 
merged together to create the corresponding cookie. At the end, the algorithm encrypts the 
cookie with its secret that is generated by the AES algorithm. The cookie generation 
formula is presented in Figure 6.9.  
       𝑐𝑜𝑜𝑘𝑖𝑒 = 𝑉𝐸𝑅𝑆𝐼𝑂𝑁𝑜𝑓𝑆𝐸𝐶𝑅𝐸𝑇 + ℎ𝑎𝑠ℎ(𝑆𝐸𝐶𝑅𝐸𝑇 +  𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝐷) +   𝑒𝑥𝑝𝑖𝑟𝑦 𝑡𝑖𝑚𝑒                     (1) 

  𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑 𝑐𝑜𝑜𝑘𝑖𝑒 = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑐𝑜𝑜𝑘𝑖𝑒, 𝑠ℎ𝑎𝑟𝑒𝑑 𝑠𝑒𝑐𝑟𝑒𝑡)                                                                                    (2) 

              Figure 6.9: Cookie generation algorithm 

The purpose of including expiry time in the cookie string is to eliminate reply attacks. In 
other words, it is infeasible for malicious users to keep sending an overheard cookie after 
its expiry time as the CES verifies the validity of the cookie while processing it. Exploiting 
two constant strings (VERSIONofSECRET, SECRET) in the cookie generation algorithm 
allows another way of replay attack prevention. These strings must be changed at regular 
intervals in order to avoid unauthorized users from using an intercepted cookie for an 
unlimited time period. It is worthy to note that the current prototype uses the time-invariant 
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constants in cookie generation as the cookie is exchanged only during the negotiation 
phase which is very short. Additionally, this procedure binds the cookie to the specific 
session by means of the destination ID that is used in the cookie structure. Due to the 
cookie encryption, the peer edge can neither access the actual cookie content nor generate 
a new cookie and use it instead of the original one. 

6.5.6 Policy Engine Algorithm for Cookie Verification 

To check whether the received cookie is identical to the one previously sent towards the 
peer, the Cookie Verification algorithm first decrypts the cookie with its secret. Then, it 
follows a similar procedure to the Cookie Generation method and produces the 
prefix_cookie as follows: 
  𝑃𝑟𝑒𝑓𝑖𝑥 𝐶𝑜𝑜𝑘𝑖𝑒 = 𝑉𝐸𝑅𝑆𝐼𝑂𝑁𝑜𝑓𝑆𝐸𝐶𝑅𝐸𝑇 + ℎ𝑎𝑠ℎ(𝑆𝐸𝐶𝑅𝐸𝑇 +  𝐷𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝐷)                                          (1)  

It is noteworthy to mention that the destination ID used in this string is equal to the source 
ID field of the packet. In the developed algorithm, it is assumed that the sender ID remains 
unchanged during cookie interactions.  

After generating the prefix of the cookie, the algorithm compares the string with the same 
portion of the received cookie string. If they were identical, next the validity of the cookie 
needs to be examined. To do this, the cookie’s expiry time is extracted from the cookie and 
it is compared with the current system time. If the expiry time is greater than the system 
time, it means that the cookie is valid; otherwise the cookie has expired. This prototype 
terminates the session in the second case. As described before, for ease of debugging, once 
the connection is terminated, the prototype returns a notification message (CETP packet 
with TOUT TLV with a zero value) to the peer. 

6.5.7 Policy Engine Algorithm for Checking ID Requirement     

The policy engine exploits the Check ID Requirement algorithm which is depicted in 
Figure 6.10 so as to figure out whether a sender’s ID type meets the ID requirement of the 
session’s policy or not. To do that, the algorithm compares each ID type in the ID-Reqc list 
with the source ID type of the CETP packet. If the sender’s ID type is not found among the 
required ID types, the procedure creates a CETP packet with an ID TLV query for the 
desired ID type (IDQ). As described in Chapter 5, in order to enhance security and trust 
between communicating edges, this message may also carry a cookie, CA Address and 
signature TLV queries depending on the connection’s policy. Additionally, this algorithm 
does not give any priority to any of the required ID types and always makes a query for the 
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first ID type in the ID-Reqc list. However, a future implementation may have a certain 
mechanism to differentiate between the preferred ID types. 
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            Figure 6.10: Check ID requirement algorithm 

6.6  Policy Engine Algorithm for Creating oFSM 

As described before, this prototype implements the policy control of CETP using the 
postponing DNS message model. Therefore, upon reception of the DNS reply from an 
authoritative server which is sent in response to local host’s DNS lookup, the policy engine 
on the outbound edge begins negotiation with the peer through the Creating oFSM 
algorithm. Figure 6.11 shows how the policy engine applies the policy when a flow is 
initiated. 
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            Figure 6.11: Policy engine algorithm for creating oFSM 

Before invoking this algorithm, the connection state and the FSM instance are created for 
the session and both are initialized by using the DNS reply information. At this step, the 
FSM’s state and transaction parameters are set to Idle and Initiate Flow respectively. 
According to the value of the session’s state and transaction, the policy engine calls the 
Creating oFSM algorithm. The algorithm first derives the policy associated with the local 
host and then checks the conformity of the destination host ID type obtained from the DNS 
reply with the ID requirement of the private host’s policy via the Check ID Requirement 
method. If the ID requirement is not fulfilled, the algorithm returns the CETP packet with a 
New ID type TLV query and other related control information; otherwise it returns a full 
requirement message which is built using the Creating Full Requirement procedure. It is 
important to note that in both cases the payload of the generated CETP packet is empty and 
also the FSM’s state is set to pending before exiting the algorithm. 
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6.7  Policy Engine Algorithm for Creating iFSM 

Upon reception of a packet of a new flow from a peer, the policy engine invokes the 
Creating iFSM algorithm that is depicted in Figure 6.12. 
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                               Figure 6.12: Policy engine algorithm for processing flow arrivals   

Since on the inbound edge the prototype does not keep any state for a new flow before a 
successful connection setup, once the policy engine detects a packet that is not related to 
any entry in the connection table, it calls the Creating iFSM algorithm. In other words, this 
algorithm is applied to all packets of a new flow preceding connection establishment. The 
algorithm first checks for a cookie TLV. If the cookie is found in the CETP control 
signaling, it verifies the validity of the cookie using the Cookie Verification method. If 
invalidity of the cookie is proven, the algorithm terminates processing and for debugging 
purposes returns the notification message (i.e. CETP packet with TOUT TLV with zero 
value). A similar procedure applies to the received signature TLV using the signature 
verification algorithm. The algorithm also aborts policy processing if the CETP packet 
contains the TOUT TLV with a zero value. In the current prototype, this message is only 
meant to notify terminating connection on the peer edge.  

Assuming the CETP packet does not contain an invalid cookie, an invalid signature or a 
notification message, the Creating iFSM procedure derives the inbound policy 
corresponding to the destination host. Then, with the help of the Check ID requirement 
procedure it examines whether the sender’s ID type meets the ID requirement of the 
destination policy. If the ID requirement is not met, the algorithm returns the CETP packet 
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with the New ID type TLV query for the preferred ID type and other related control 
information.  

On the contrary, if a sender is identified by one of the preferred ID types, the algorithm 
goes to the next step and examines whether the peer edge fulfills other destination host’s 
requirements or not. To achieve that, it iterates over the policy Reqc list and looks for the 
relevant values within the CETP control signaling for each required control information. 
Then, it uses the processing control information method to check the received TLVs. If any 
of the required information cannot be answered with the received control TLVs, the 
algorithm returns a full requirement message. It is important to notice that in this case if 
the CETP packet carries the payload along with the control information, the Creating iFSM 
instead of a full requirement returns a notification message so as to tell the peer that the 
connection cannot be established. This design decision is made because in the postponing 
DNS model it is assumed that the first message does not contain any payload. Therefore, 
from algorithm’s perspective, the CETP packet containing a non-empty payload means that 
the inbound edge has already sent a full requirement and the outbound CES failed to reply 
to queries appropriately. Consequently, there is no need to repeat a full requirement. 

In contrast, assuming all requirements are met, first a connection state and FSM for the 
ongoing session are generated and the state of the session is set to ongoing. Next, the 
replies to the received TLVs are made via the Replying to control information algorithm. 
After that, the algorithm checks the CETP payload. If the packet has payload, the data 
packet is retrieved from the payload field and the generated control TLV replies are stored 
in the FSM pending TLV list. Depending on the payload type, the algorithm exhibits 
differing behaviors. In case of the IPv4 compressed encapsulation type, the complete IPv4 
header with the destination host IP address as the destination address and the allocated 
proxy address as a source address are added to the data packet and returned for forwarding 
to the destination. For the Ethernet encapsulation, the entire IP packet is available in the 
CETP payload. Thus, only the source and destination address fields are modified to the 
destination IP address and proxy address respectively. But if the payload is empty, the 
algorithm returns a new CETP packet with the control TLV replies and an empty payload 
for forwarding to the peer CES. 

However, there are different types for RLOCs and encapsulations and it is feasible that an 
inbound policy includes more than one preferred RLOC and encapsulation type; it is 
enough for the peer to support only one of the required RLOC and encapsulation types. As 
an additional assumption, this algorithm ignores a changing ID type request from a sender 
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in order to minimize the exposure of the destination host information before assuring the 
sender’s legitimacy. 

6.8  Policy Engine Algorithm for Processing Pending State 

As described before, on an outbound edge the session goes to the pending state after 
sending the first CETP packet. Therefore, upon reception of the response message from the 
inbound CES, the policy engine exploits the Processing Pending State algorithm to process 
the incoming CETP message and forge relevant packets.  

Figure 6.13 illustrates how the Processing Pending State algorithm works. The algorithm 
first checks whether the CETP packet carries TOUT TLV with a zero value. If the answer 
is positive, it terminates policy processing and deletes all state information and FSM 
related to that session. The algorithm exhibits the same behavior if either invalid cookie or 
invalid signature TLV is found in the packet’s control signaling In this case, a DNS error 
message is returned to the local host as a notification of unsuccessful connection 
establishment. 
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    Figure 6.13: Policy engine algorithm for processing pending state 

Assuming the CETP packet is not a notification message; the algorithm looks for the IDQ 
TLV within the control signaling. If ID Query is found, the algorithm checks whether the 
local host supports the required ID type or not. If the host cannot be identified by that ID 
type, the procedure returns a notification message to tell the peer that the connection 
cannot be established. In contrast, if the local host registers with the requested ID type as 
well as the default random ID in the CES, the local host ID in the corresponding 
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connection state and FSM changes to the value of the required ID type and the CETP 
packet with the new source ID containing the control TLV replies and full requirement is 
returned for forwarding to the peer. It is important to note that in this case the session 
remains in the pending state. 

When there is no IDQ TLV in the packet, the algorithm sets the state of the session to 
ongoing. Then, the replies to the received TLVs are made via the Replying to Control 
Information algorithm and are stored in the FSM pending TLV list. Finally, the DNS reply 
containing the proxy address representing the destination host is sent back to the local host 
by the algorithm. 

6.9  Policy Engine Algorithm for Processing Ongoing State 

The policy engine processes a packet that belongs to a session in ongoing state using the 
Processing Ongoing State algorithm. Figure 6.14 shows the algorithm which is designed 
for policy processing of ongoing state. 

    

Process ongoing state
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No No
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             Figure 6.14: Policy engine algorithm for processing ongoing state 

The algorithm first checks whether a packet has CETP layer or not. If the packet is not 
CETP message, it means that the message is originated from a local host and need to be 
forwarded to the peer edge. Therefore, a CETP packet whose control signaling contains 
control TLVs that were previously stored in the FSM pending TLV list and its payload that 
were the actual data packet received from the private host is generated and returned.  
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Assuming the packet has a CETP layer, the algorithm looks for TOUT TLV with a zero 
value. If this TLV is found, it terminates policy processing and deletes all state information 
and FSM related to that session. The algorithm exhibits a similar behavior if either invalid 
cookie or invalid signature TLV is found in the packet’s control signaling. In all 
aforementioned error cases, it returns an ICMP message (with an error message of a Host 
is Unreachable) to the local host as an indication of the connection termination. 

If no notification message, invalid cookie or invalid signature was detected, the algorithm 
goes to the next step and checks the CETP payload. If the payload is not empty, the data 
packet is extracted from the payload field. The algorithm modifies the IP header of the data 
packet based on the payload type. If the encapsulation type is IPv4 compression, a new 
IPv4 header with the destination host IP address as a destination address and the proxy 
address as a source address is added to the data packet and is returned for forwarding to the 
destination. In contrast, in the Ethernet encapsulation, the whole IP packet exists in the 
CETP payload. Hence, only the source and destination address fields are modified to the 
destination IP address and proxy address respectively. On the contrary, if the payload 
carries nothing; the algorithm returns a new CETP packet with the control TLV replies and 
empty payload for forwarding to the peer. 

However, any of the communicating parties may request from the peer to change its ID 
type while the session is in ongoing status, but this case has not been taken into account in 
this prototype and left for future implementation.  

 

 

 

 

 
 
 
 
 
 
 



 

 81 

7 Implementation and Evaluation 

This chapter describes a prototype that we implemented to verify the protocol logic and its 
policy control explained in the previous chapter in details. At the beginning of the chapter, 
the scope of the test network, the required experimental setup and necessary network 
elements that were used in the test environment are discussed briefly. Next, the chapter 
presents the test results which are collected from more than one hundred different test 
cases. The general configuration of the testing environment is explained. Then some of test 
cases are examined in more details to show how the prototype actually works. The 
difficulties and issues we faced while designing and prototyping CETP and relevant 
functionalities are discussed later. Finally, the effectiveness of the protocol for edge-to-
edge tunneling and policy control of cooperative firewalls is evaluated. 

7.1  Test Network and Components 

The prototype network is simulated on a PC running the Linux/Debian operating system. 
Since the prototype requires a set of computers (at least five) to examine various test 
scenarios, KVM (Kernel-based Virtual Machine) solution is used for virtualization 
(available at http://www.linux-kvm.org). Using KVM, multiple virtual machines can be 
run on a single PC so that each virtual machine has the virtualized hardware such as a 
network card and is running the Linux/Debian operating system. To access virtual 
machines from the main PC and run the source code files on the respective virtual PC, SSH 
connections are established. 

7.2  The Scope of Implemented Prototype 

This thesis work is integrated into the primary CES prototype that has been implemented 
as a proof of concept. Therefore, this prototype, like the original prototype, contains a 
simplified implementation of the Customer Edge Switching architecture described in the 
fourth chapter. Moreover, there are some limitations that were set to this prototype. To 
facilitate the implementation work, the host registration operation is excluded. Instead, the 
assumption was made that hosts are already registered into the respective CES and each 
CES node maintains the valid information of all active hosts residing in its customer 
network. It is also deemed that all virtual machines are behind a NAT and there is no 
connection from the external network to the virtual PCs. In addition, the prototype does not 
implement the hash algorithm that is used to calculate sufficiently unique random type of 
IDs. The hash values are generated beforehand and stored along other ID types of that host 
in the Host Register List (HRL) and the DNS database. 
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This prototype does not include the dynamic initialization of admission policy as a 
function of network condition, the source and destination ID types and other parameters. It 
is assumed that each host in the private network is tied to a certain admission policy that 
remains invariant under any situations. As CETP packets can be transported over the 
Ethernet or on top of the IP layer, the CES device exploits the NAPTR resource record 
type to forward a DNS query originated from a local host. The peer RLOC that is a 
routable address to that CES and destination’s ID are encoded in a regular expression of 
the focusing type within the response section of a NAPTR record:  

‘‘A B U ‘‘ID+idprotocol’’ !^(.*)$!dest: C,D?E=F!’’  

The A, B, E and F parameters describe the order, preference, address type and the actual 
address of a given type respectively. The C and D parts indicate the destination ID type 
and the actual value of ID.  

In the original prototype, for CES-to-CES communication, the source and destination IDs 
identifying communicating endpoints are carried in address fields of the IP packet and the 
Ethernet frame, whereas in this implementation, CETP is used to tunnel data and signal 
control related information between CES nodes while transporting  different types of ID.  

For implementing the signature TLV of CETP, the prototype does not exploit a public key 
infrastructure. Instead, it is assumed that each CES has certificates of remote CES nodes 
beforehand. Also, it does not use the diameter protocol to assure certificates of other CESs. 
In the test network, the IPv4 routing is used within the private networks while the core 
network can be built over Ethernet, IPv4 or IPv6. 

The prototype by default identifies user devices in a private network with a unique random 
type of IDs; however, upon a request to change ID type, any other type of ID can be used 
as a user identifier. Furthermore, this work does not include on-demand multi-homing 
functions and it was left for a future implementation. 

7.3  Experimental Setup 

The purpose of the test network is to simulate two customer networks and a core network 
between them. The test environment consists of a number of private hosts (e.g. Host A, 
Host B), two CES devices at the edge of each private network (CES A, CES B) and an 
authoritative DNS server. Figure 7.1 illustrates the prototype network that is built using 
virtualization on a single PC (cesproto). 
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                    Figure 7.1: The prototype network 

Due to the prototype network topology and physical connection between all virtual 
machines, care has been taken in terms of address allocation to make sure that Host A and 
CES A are in the same private network and Host B and CES B reside in another private 
network. 

To configure the prototype network, each virtual machine must be configured individually. 
The network configuration can be made via /etc/network/interfaces and /etc/resolv.conf 
files as each virtual machine is running the Linux operating system. Additionally, a private 
host uses the CES device that it is registered in as the name server. 

In Linux, it is straightforward to simulate several networks by adding routes to respective 
routing tables. Using this technique, the prototype network is divided into three different 
networks while they are actually residing in the same physical network. To give an 
example, the Host A virtual machine is configured so that all packets originated from Host 
A are routed through CES A. This is done by the following Linux command: 

     For IPv4:  “route add default gw <CES A IPv4 Address> dev eth0” 

    For IPv6:  “route -A inet6 add default gw <CES A IPv6 Address> dev eth0” 

The same procedure is applied to other virtual machines in order to add corresponding 
routes. Furthermore, the necessary software and servers like Lynx are installed on the host 
machines. 

The DNS server (Bind 9) is installed on the virtual machine that serves all DNS queries 
coming from other nodes in the prototype network. For the DNS machine, configuration is 



 

 84 

created via /etc/bind/named.conf.local and /etc/bind/zones/db.ces. Moreover, all virtual 
machines are administered using virsh. Virsh provides the main and stable interface for 
controlling the virtualized operating system. 

7.4  Network Elements 

This subsection is dedicated to describing the network elements exploited to simulate 
different scenarios in the test environment. 

Host: Host nodes are designed to simulate regular IP stack end systems. As described 
before, at first they are registered to the corresponding home CES. After that, the CES has 
their correct information including domain names, local addresses and IDs in its HRL. 
Each host can establish a connection to a target machine by executing a DNS lookup for 
the destination domain name, decoding received DNS responses and eventually 
dispatching data flows to IP addresses obtained from DNS replies. 

CES: CES devices reside at the edge of private networks and exchange packets between 
the customer and core network in a similar way to NATs. More precisely, a CES passes 
DNS inquiries from private hosts to the DNS server. Upon the reception of a reply, it 
allocates a proxy IP address representing the destination host to the sender from its IP 
address pool, stores the corresponding mapping information in the connection table and 
sends a modified DNS reply back to the initiator. A CES can also negotiate with the 
remote CES about some parameters (e.g. source ID type) before admitting a new flow. The 
negotiation phase is fully policy controlled. Additionally, Customer Edge Switches unlike 
NAT devices provide bi-directional connectivity for private hosts that they serve. In other 
words, they accept the requests of connection invitation from other networks and deliver 
them to the targeted host.     

DNS Server: From the prototype perspective, this network element resembles an 
authoritative name server. Therefore, it loads a master file at the beginning and generates a 
set of resource records using the file content. After initialization, it is ready to receive DNS 
queries and return appropriate replies. 

7.5  External Libraries 

Three external libraries are used in this implementation work. There are Scapy, Crypto and 
DNSPython. 
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7.5.1 Scapy 

Scapy (available at http://www.secdev.org/projects/scapy/doc/installation.html) is an 
interactive packet manipulation program which is written in python. It allows a user to 
forge or dissect packets of different protocols, send and receive them, match queries and 
responses and many other operations. Consequently, the prototype uses this program to 
perform all packet manipulation and data transmission. 

7.5.2 DNS Python 

DNSPython is a DNS library for Python (available at http://www.dnspython.org/). 
Generating DNS queries and replies, sending them on wire and other DNS related 
operations in the prototype are done with DNSPython. 

7.5.3 Python Cryptography 

The Python cryptography toolkit (available at https://www.dlitz.net/software/pycrypto/) 
includes a wide variety of cryptographic functions. It is aimed to provide a simple, reliable 
and stable interface for existing cryptographic algorithms. In this thesis work, generating a 
public and private key pair, encryption and decryption of messages and creating and 
verifying signatures are done with the Python cryptography program. 

7.6  Prototype Software Structure 

The class diagram of the prototype is depicted in Figure 7.2. 

   
         Figure 7.2: The class diagram of CES prototype 

http://www.secdev.org/projects/scapy/doc/installation.html
http://www.dnspython.org/
https://www.dlitz.net/software/pycrypto/
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To implement the protocol and relevant methods, many changes have been made in the 
following classes of the original prototype: PacketRelay, LocalHostRegister, NATTable, 
GeneratingDNSDatabase, CES and DNSProxy. The CETP class is also added to the 
current prototype in order to forge and dissect CETP packets. Additionally, the policy 
control of CETP is implemented via the Policy Engine, Policy and FSM classes. 

7.7  CETP Class Implementation 

As all data transmissions in the prototype are done with Scapy, we decide to implement the 
CETP packet class by extending the Scapy’s packet class and defining the packet 
parameters in the field_list attribute. The different parameters of a CETP packet are 
defined using built-in fields of Scapy. For example, as described in Chapter 5, the actual 
ID value can have variable length. Thus, the source and target ID fields are defined with 
Scapy’s StrLenField whose length is specified by the ID length parameters. 

Moreover, the optional control TLVs fit into a string whose length is calculated as follows:       

      𝑇𝐿𝑉 𝑙𝑒𝑛𝑔𝑡ℎ = 𝐻𝑒𝑎𝑑𝑒𝑟𝐿𝑒𝑛𝑔𝑡ℎ − (𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝐷𝐿𝑒𝑛 + 𝑇𝑎𝑟𝑔𝑒𝑡𝐼𝐷𝐿𝑒𝑛 + 8)                   (1) 

Given this, two separate functions are used for adding a control TLV to the field and 
parsing the TLV string captured from wire respectively.  

Since signature TLV carries a signed packet header, in the adding control TLV 
functionality, it is added after all other TLVs. To generate a signature, first the signature 
TLV is filled with zeros (size of the value segment is fixed and is 128 octets) is added to 
the CETP header. Then, the packet header is hashed to the corresponding MD with SHA-1 
and finally the MD is signed by the private key of the home CES. The payload part is also 
defined with a string field and encoded depending on the encapsulation type. On the other 
hand, the data can be decapsulated from the CETP payload string and further may be 
forwarded to the targeted private host. Additionally, there are three different methods in 
this class that model CETP over Ethernet, on top of IPv4 or IPv6. The CETP packet class 
is illustrated in Appendix B. 

7.8  Testing Scenario 

For testing purposes practically for checking the policy engine, ten hosts residing in the 
private network (i.e. corporate network A) register in the outbound CES (i.e. CES A). Each 
host is simulated using a virtual interface on Host A virtual machine and tied to the specific 
packet admission policy regardless of ID type. The outbound policies associated with the 
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local hosts are listed in Appendix C. Testing has been done in this manner because it is 
rather difficult to keep track of policy initialization while ID types are being changed 
during the session. 

The testing process is divided into ten different parts. In each part, a certain policy is 
assigned to the server residing in the private network B behind the inbound CES (CES B) 
and ten hosts in the network A try to ping that server at the same time.   

The described operation is done via a simple client program running on Host A. At the 
beginning of this program, the DNS lookup for the remote server (i.e. Host B) is performed 
on behalf of each private host and after the DNS resolution echo messages are directed to 
the destination element. This program runs ten times and each time Host B is tied to 
different packet admission policy. These policies are listed in Appendix D. As described in 
Chapter 6, information of each host is defined in a setting file. Therefore, before each 
testing part, the policy number of Host B in CES B’s configuration file is modified 
manually. However, it seems easier to perform all testing scenarios at once and 
automatically, but we found this method more convenient to capture exchanged packets 
and analyze the results. The entire testing results are listed in ten separate tables and 
presented in Appendix E. According to the obtained results, the policy processing module 
of the prototype works as expected and we did not find any case that the prototype behaves 
strangely. In the following sections, some special test cases are described in order to 
provide an overall picture of testing. 

7.9  Example Run of Inbound Policy Without any Requirements 

It is possible that most of the applications running on a specific server require no extra 
information from a client preceding the connection establishment. This test example is 
designed to simulate such conditions. In this scenario, Host A behind CES A tries to 
connect to Host B behind CES B while the policy of Host B has empty Reqc policy vector. 
As previously mentioned, this prototype does its best to meet receiver’s preferences while 
it is assumed that the sender tends to continue communication as he/she initiates the 
connection. The following polices are defined for Host A and Host B in the correspondent 
CES devices. 
Policy of Host A: 
Role=outbound 
ID-Reqc=RANDOM                                                                
Reqc=  
RR-Reqc=TOUT, IPv4_RLOC, IPv6_RLOC 
Offerc=IPv4_RLOC 
Available=FQDN,TOUT,IPv4_RLOC,Cookie,CA_Address,Signature 
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Policy of Host B: 
Role=inbound 
ID-Reqc=RANDOM 
Reqc= 
RR-Reqc=FQDN, Signature 
Offerc= 
Available=FQDN,TOUT,IPv4_RLOC,IPv6_RLOC,Cookie,CA_Address,Signature 
 
Due to the DNS postponing model, upon reception of the DNS reply from the DNS server, 
CES A buffers this message and starts negotiations with the remote edge whose routing 
locator is obtained from the DNS inquiry. The policy engine uses the Creating oFSM 
algorithm to enforce Host A’s policy. According to the ID-Reqc policy vector, the sender’s 
ID type needs to be a unique random number. Since in this prototype hosts are identified 
with locally generated random numbers by default, a new ID type TLV is not required in 
the CETP control signaling. In addition, as the Reqc list is empty and Offerc policy vector 
contains IPv4 RLOC TLV, IPv4 RLOC TLV containing alternative IPv4 addresses of CES 
A is the only control information which is added to the CETP packet. Since this TLV also 
exists in the RR-Reqc policy vector, the TLV’s operation is set to reliable response.  
Finally, CES A routes the forged CETP packet towards CES B. Figure 7.3 draws the 
message flows in this test case. 

                  
Figure 7.3: Example of successful connection setup for a destination without any requirements   

On the inbound edge, the policy engine exploits the Creating iFSM procedure to process 
the received CETP message. From the Host B perspective, the preferred ID type is random. 
Thus, there is no need to add a changing ID request to the CETP reply message. As the 
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next step, the algorithm checks whether the Host B’s requirements can be answered by the 
incoming packet. Since the Host B’s Reqc policy vector does not include any control TLV, 
upon the first message the connection between two end nodes is established and relevant 
state information for the session is stored in CES B’s connection table.  To forge CETP 
reply packet, IPv4 RLOC TLV with the acknowledgement operation is added to the control 
signaling. On the other hand, as the Offerc list, same as the Reqc policy vector, is empty, 
no additional control TLV is incorporated into the message. 

When CES A receives the CETP packet from CES B, it forwards the DNS reply to Host A 
and changes the session state to ongoing. Once Host A obtains the destination routing 
information, it sends an echo message towards Host B. On the way to Host B, CES A picks 
up the data packet, encapsulates it into a CETP message and eventually directs it to CES B.  

On the opposite side, CES B extracts the original data packet from the CETP payload and 
further delivers it to Host B. The echo reply message is delivered to Host A in a similar 
way. 

7.10  Example Run of Inbound Policy With A Specific ID Requirement 

Some applications such as mission critical tasks only establish a connection with an end 
user who is identified by a more secure ID type than locally generated random numbers. 
Hence, if an inbound edge node receives a CETP packet with such sender’s ID type, it 
requests the originator to change its ID to the preferred ID type. To test this scenario, 
following policies are assigned to Host A and Host B respectively. 

Policy of Host A: 
Role=outbound 
ID-Reqc=RANDOM                                                                
Reqc=  
RR-Reqc=TOUT, IPv4_RLOC, IPv6_RLOC 
Offerc=IPv4_RLOC 
Available=IPv4_RLOC,Cookie,CA_Address,Signature,FQDN 
 
Policy of Host B: 
Role=inbound 
ID-Reqc=MOC 
Reqc=Signature,CA_Address,FQDN,IPv4_RLOC,IPv6_RLOC 
RR-Reqc = 
Offerc=Signature,IPv4_RLOC,IPv6_RLOC 
Available=FQDN,TOUT,IPv4_RLOC,IPv6_RLOC,Cookie,CA_Address,Signature  
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Since Host A policy is identical to the previous example, after the DNS resolution, the 
Creating oFSM forges a similar CETP message (containing the IPv4 reliable response TLV 
and empty payload) and forwards it to CES B. 

Upon reception of the CETP message, CES B invokes the Creating iFSM to apply Host 
B’s policy. According to the ID-Reqc policy vector, the sender is required to use the 
Mobile Operator Certificate (MOC) identifier. As local hosts are identified by Random IDs 
within this prototype, thereby the algorithm adds the changing ID type query for the MOC 
ID type to the CETP reply message. As previously mentioned in Chapter 5, it is assumed 
that only Cookie, Signature and CA address TLVs could company New ID type queries. 
Thus, the algorithm checks whether the control information is present in the Reqc and 
Offerc policy vectors. Since Host B’s Reqc policy vector contains Signature and CA 
address TLVs; in addition to the New ID type TLV, Signature and CA address TLV 
queries are incorporated into the reply message. It is important to note as Signature also 
exists in the Offerc list, CES B provides its own signature within the value segment of the 
Signature TLV. The message flow exchanged between two endpoints is illustrated in 
Figure 7.4. 
  

   

         Figure 7.4: Example of successful connection setup for a destination with MOC ID requirement  

Since the CETP message that arrives at CES A contains the peer’s signature and New ID 
type Query, the Pending State Processing algorithm first examines the validity of the 
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signature and then checks whether Host A supports the MOC ID type or not. As the 
signature is valid and Host A also registers with the MOC identifier in CES A, the 
algorithm changes the local host’s ID from the random value to the MOC in the 
corresponding connection state and builds the CETP reply message with the new source 
ID. The reply message carries the CES A’s Signature and CA address that could be used 
for an assurance query.  

On the Inbound edge, when the Creating iFSM procedure receives the message with 
expected sender’s ID (MOC), it looks for replies to other Host A’s requirements within the 
message control signaling. The packet only carries replies to CA address and Signature 
queries. Therefore, the algorithm creates a full requirement and returns it to CES A. 
Signature, CA Address, FQDN, IPv4_RLOC and IPv6_RLOC TLVs are specified as Host 
B’s requirements on the Reqc list. Consequently, the full requirement message contains 
TLV queries for all these control TLVs. In addition, since Signature, IPv4_RLOC and 
IPv6_RLOC also exist on the Offerc list; CES B offers its signature, alternative IPv4 and 
IPv6 addresses in the value fields of signature, IPv4_RLOC and IPv6_RLOC TLVs 
respectively.    

Upon reception of the second CETP packet from CES B, CES A by means of the Pending 
State Processing algorithm generates replies to the received TLV queries and stores them 
in the session’s FSM pending TLV list. The reply TLV list contains Signature, CA Address 
and FQDN response TLV. It also includes the IPv4_RLOC reliable response TLV as this 
TLV is available in the RR-Reqc list as well as the Reqc policy vector. As IPv6_RLOC 
does not exist on Host A’s available list and thereby could not be offered to the peer, 
Backoff code 2 (error code = 2) is added to the reply TLV list. In the next step, CES A 
forwards the pending DNS reply to Host A. After that Host A dispatches the echo message 
destined to Host B. The echo message on the way to Host B first goes through CES A. 
CES A creates a CETP message and incorporates the control information within the FSM 
pending TLV list to the packet’s control signaling. The echo request is also fit into the 
payload. Finally, CES A sets the state of the session to ongoing and routes the CETP 
message to Host B.    

On the opposite side, CES B using the Creating iFSM first checks whether Host B’s 
queries could be replied with the control information in the message. The algorithm 
initially examines CES A’s signature. As the signature is valid, it initiates a DNS lookup 
using Host A’s domain name derived from the FQDN TLV. This is done to execute the 
return routability check on naming level. After the successful return routability check, it 
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comes to examine replies for remaining queries. Since the appropriate control information 
for CA address and IPv4_RLOC TLVs (one of the requested RLOC type) is received from 
CES A, the procedure sets the session’s state to ongoing and derives the original data 
packet from the CETP payload. Then, it directs the echo message to Host B.  

The CETP message containing the echo reply message along with the IPv4_RLOC and 
Backoff code 2 TLV acknowledgements is sent to CES A. Finally CES A delivers the echo 
reply to Host A. 

7.11  Some Example of Unsuccessful Connection Establishments 

In this section, some test scenarios in which connections did not end up to exchange of 
data flows between two end points are examined in more detail. 

7.11.1  Example Run of Unsupported ID Requirement 

Let us assume that unlike the previous example, Host A does not support the MOC ID 
type. Thus, when CES A receives the MOC ID query from the inbound edge and then it 
did not find the MOC ID of Host A in its HRL, a notification message is sent back to the 
remote edge and the session state information is deleted completely. At the end, CES A 
sends the DNS error reply to the local host as a notification of the unsuccessful connection 
setup. Figure 7.5 represents this testing scenario. 
     

            
Figure 7.5: Example of unsuccessful connection establishment due to unsupported ID requirement 

7.11.2  Example Run of Unsuccessful Return Routability check 

For this test case, we again refer to the example of inbound policy with the MOC ID 
requirement. To simulate a failure in the naming level return routability check, Host A 
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registers in CES A’s HRL with a fake domain name. Hence, when CES B executes a DNS 
query using Host A’s domain name that is derived from the FQDN response TLV, the 
DNS server returns an error DNS reply. The reason is that no NS entry in the DNS 
database is matched to the requested domain name. Upon reception of the error message, 
CES B concludes that the sender is trying to masquerade as someone else and consequently 
blocks the received echo message destined to Host B and terminates the connection with 
the other end by sending a notification message. This action (i.e. terminating the 
connection) is taken in order to eliminate unauthorized access. On the opposite side, CES 
A removes the corresponding mapping state upon the notification message and informs 
Host A about the connection setup failure using an ICMP error message. The described 
scenario is depicted in Figure 7.6. 

  

   Figure 7.6: Example of unsuccessful connection setup due to unsuccessful return routability check 

7.11.3  Example Run of Unsupported Receiver Requirement 

As described in Chapter 6, if a destination host inquires for specific control information 
that a sender does not support according to its Available policy vector, the connection 
setup fails and the inbound edge terminates the session. This scenario is tested with the 
following Host A and Host B policies. 

Policy of Host A: 
Role=outbound 
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ID-Reqc=RANDOM                                                                
Reqc=TOUT 
RR-Reqc= 
Offerc=IPv4_RLOC,MAC_RLOC,IPv6_RLOC,FQDN 
Available=FQDN,IPv4_RLOC,IPv6_RLOC,Cookie,CA_Address,Signature 
 
Policy of Host B: 
Role=inbound 
ID-Reqc=RANDOM 
Reqc=TOUT,Signature,CA_Address,IPv4_RLOC,Report_unwanted_msg 
RR-Reqc=Signature 
Offerc=Signature,TOUT 
Available=FQDN,TOUT,Ether_Payload_encapsulation,IPv4_Payload_encap
sulation,Signature 

Figure 7.7 shows the message flow of the unsuccessful connection setup in which 
destination host’s requirements are not fulfilled completely. After the DNS resolution, CES 
A generates a CETP message containing TOUT TLV query, IPv4_RLOC, MAC_RLOC, 
IPv6_RLOC and FQDN response in order to enforce Host A policy and further directs it to 
CES B. 

Figure 7.7: Example of unsuccessful connection establishment due to unsupported receiver requirements 

On the inbound edge, CES B processes the received message and forges the CETP reply 
packet. As Host B requirements cannot be answered by the control signaling of the CETP 
message, CES B returns the full requirement message which carries TOUT, Signature, CA 
address, IPv4_RLOC and Report_unwanted_msg query. It is important to note that CES B 
provides its own signature and TOUT information to the peer within the message control 
signaling. To limit receiver's visibility before connection setup, replies to the sender’s 
queries are not included in the full requirement. 
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Upon reception of the full requirement, CES A forwards the DNS reply to Host A and 
waits for data packets from the sender. Once the data flow is received from Host A, CES A 
encapsulates it into a CETP message and along with the control TLV replies sends back to 
the inbound edge. The control signaling of the reply CETP contains the Backoff code 2 
(error code = 2), Signature, CA address, IPv4_RLOC and Backoff code 2 (error code = 1) 
response. The Backoff code 2 (error code = 2) response is added to the control signaling as 
a response to the TOUT query. The reason is that the TOUT TLV does not exist on Host 
A’s Available policy vector and thereby Host A does not offer its TOUT information to the 
peer. Moreover, as Report_unwanted_msg TLV type is not defined in the current 
prototype, the CETP message also carries Backoff code 2 (error code = 1) response.  

When CES B receives the CETP message containing the control information that is unable 
to fulfill all Host B’s requirements and non-empty payload, the inbound edge node 
terminates the connection and returns a notification message to CES A. 

On the outbound edge, CES A deletes the connection state upon the notification message 
and sends the ICMP error message towards Host A as a notification of connection setup 
failure. 

7.11.4  Example Run in Disruptive Network 

In real networks, it is highly probable that one of the parties involved in communication 
interrupts for a while and recovers once the disruptive factors are eliminated. To examine 
the described condition, let us assume the example of inbound policy without 
requirements. After successful connection establishment, we tried to simulate disruptive 
network by restarting either CES A or CES B. Let us consider a situation where CES A is 
restarted while other communicating nodes including Host A, CES B and Host B are 
running. In this case, CES A drops the data packets originated from Host A since it could 
not match the messages to any entry in the connection table. As the next step, Host A is 
notified about the connection failure via the ICMP error message from CES A. On the 
contrary, in the above test example if CES B goes down and restart, CES B discards data 
flows received from the other end (Host A) and returns a notification message (containing 
TOUT TLV with a zero value) towards CES A. It is worthy to mention that if in the 
described scenarios TCP connection is running between two hosts, the session will fail and 
cannot recover once each of CES devices is restarted. To recover broken connections, Host 
A should initiate communication and perform DNS lookup again.  
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7.12  Problems Throughout the Research Work 

At the beginning of the thesis work, we decided to implement a rough prototype of the 
proposed protocol (CETP) so that we could get an overall picture of disparate protocol 
functionalities; because it was clear that correct specification of such a complicated 
functionality just on paper is not feasible. We implemented the packet structure several 
times to obviate defects spotted during prototyping. To give an example, in the early 
versions of the protocol, Q and R flag bits were a part of the fixed header and specified the 
operation of the entire CETP message rather than certain control information. The 
implementation work led us to shift these operation bits to the control TLV format. The 
reason was that these signaling flags have no meaning for the payload which is aimed to 
tunnel data flows; however, they are closely related to the CETP control signaling.  

Although, at the first glance, this modification seems rather straightforward to implement, 
in practice this design decision resulted in considerable additional complexity of the 
protocol processing. During prototyping, we realized that systematic procedures need to be 
designed to handle signaling that is happening via CETP control signaling. Consequently, 
various algorithms were proposed and implemented before we came to an agreement for 
the final implementation of policy control of CETP that we have done within this research 
work. Furthermore, since the policy engine may operate in many ways, we prototyped and 
evaluated only a limited number of them (e.g. postponing DNS model) and the rest is left 
for further studies. 

In addition, we encountered problems while we use Scapy as the primary tool for data 
transmission and packet manipulation in the prototype. The main issue emerged when we 
strived to modify Scapy classes and built-in functions for implementing the CETP packet 
and policy engine class. Due to lack of documentation, we started probing different aspects 
of the Scapy program by means of trial and error method. This approach can be applied 
easily, but it is very time consuming and might not reveal all exceptional cases.  

Even though, implementing CETP packet via extending packet class was a challenging 
task due to alignment and padding considerations, undoubtedly the design, prototyping and 
testing of the policy processing algorithms were the most difficult part of this thesis. In the 
first place, we did not have a clear picture of the policy engine concept; however the 
essence of this module was proven to us. Moreover, testing the policy engine so that it can 
be claimed that the method works appropriately in all cases was a complicated task. It was 
assumed that the policy processing algorithms are generic and thereby must be capable of 
enforcing a wide variety of packet admission policies seamlessly. To obtain reliable 
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results, one hundred test cases were designed in such a way that the policy engine 
algorithms were examined thoroughly. 

7.13  Evaluation of Results    

In the developed prototype, CETP is used for inter CES communication. In addition to 
policy processing test cases, the prototype was tested with the well-known protocols: SSH, 
SFTP and HTTP. The testing results including packet captures indicate that the prototype 
operates exactly as we expected. In all testing scenarios, both end points reside in the 
private networks and thus data flows have to go through the CES devices before delivery 
to the destination host. Moreover, the different messages with the variable content size are 
sent from a private host to the other end in order to test fragmentation functionality. 
Whenever the message size after adding the CETP header exceeds the CES machine’s 
MTU and the DF bit is also off, the prototype fragments the data packet into smaller pieces 
and encapsulates each segment using the Ethernet payload type. However, on the outbound 
edge, the fragmentation task is carried out properly, but the inbound CES faces the 
problem in reassembling the fragments and delivering the original packet to the local host. 
As it is very rare that a sender sets the DF bit in the IP header to zero, we did not resolve 
the problem within this thesis work and it is left for future implementation. 

We also found out that in some situations especially during the negotiations it is possible 
that an edge node needs to send an empty CETP packet (with no control TLV and no 
payload) towards the peer. However, according to the flags field (C and R bits) of the 
CETP header, if the CETP packet does not carry any control information, its payload must 
be non-empty. As a consequence, with the current specification we cannot create an empty 
CETP message. To counter this, the definition of the CETP flags needs to be modified. 

7.14  Discussion 

Although, in the first CETP specification, the Q and R flag bits were indicators of the 
CETP message operation, the developed prototype made us to shift these operation bits to 
the control TLV field. We made this decision because these signaling flags are 
meaningless to tunneled data packets; rather, they are tied to the CETP control signaling 
concept.  

Additionally, in the early version of CETP, only two different operations were defined (i.e. 
Query and Response) using the Q and R bits. Further studies led us to take advantage of all 
four possible combinations of the operation bits and defined Query, Response, Reliable 
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Response and Acknowledgment operations. These operations are aimed to assist the CES 
devices in enforcing various packet admission policies. In other words, the edge nodes 
using these operation bits can inquire for specific control information, reply to the received 
queries from the remote edges and acknowledge the received replies. This design decision 
had a significant impact on the way of defining policy vectors within this work. For 
instance, the Reqc list is defined to declare the control information that must be queried 
from the other end with the Query operation while the RR-Reqc list includes the control 
TLVs that an edge node expects to receive the acknowledgement messages upon sending 
them with the Reliable Response operation. 

Since the purpose of policy control of CETP is to fulfill the receiver’s needs rather than the 
sender’s requirement, the policy processing cannot be done in the same way for both 
incoming and outgoing sessions. To differentiate between the policies for the inbound and 
outbound connections, the Role parameter was added to the policy definition. 

Another issue that captured our attention during the implementation work was two 
different definitions of the length field in the control TLV format. After prototyping, we 
realized that however choosing an appropriate length field (one-byte or two-byte length 
parameter) according to the size of the value segment optimizes the packet size, it adds a 
considerable overhead and complexity to the protocol processing. To simplify CETP 
packet structure and avoid performance penalty, we decide to use the fixed-size length 
parameter for all control TLVs regardless of their value segment size in a future prototype. 

As described before, the CETP packet structure is divided into three parts: the fixed 
header, optional control information and payload. The basic idea of introducing the 
payload and the control signaling in CETP messages is to send signaling information along 
a tunneled data flow in one packet rather in separate packets. As a result of this design 
decision, the number of packets transporting over the core network is reduced 
substantially. We also believe that with this packet format we can optimize the firewall 
processing overhead and become close to the optimum Round-trip time (RTT). However, 
for proving these claims we need to conduct performance testing on our prototype in a 
future work.    

On the other hand, to make ID encoding flexible and facilitate implementing future 
extensions in CETP, ID fields and all control information are encoded in a TLV format. 
Due to this encoding, CETP can be used for transporting arbitrary types of ID with a 
variable size. 
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The robustness testing of the CETP development was out of scope of this work. In a 
separate research, for example we should introduce a separate TOUT for RLOC polling for 
robustness reasons. 

We have noticed that the term CA in CETP is not quite correctly used. In a future version 
we may rename it to something more appropriate.  

For optimization reasons, once oCES notices from the CETP response that it is unable to 
meet the receiver's requirements, instead of storing the reply and sending DNS response to 
host it could send DNS NACK to host and drop the session state. However, this is not done 
in the current prototype and left for a future work. 

In the current prototype, upon the second message from iCES, outbound CES forwards the 
DNS reply to the private host. After this, the local host keeps sending data packets, 
although iCES might need to communicate with a third party for example for return 
routability check before establishing the connection. Thus data packets are received while 
iCES is conversing with a third party might be lost. To counter this problem, we can buffer 
data flows either in iCES or in oCES for limited period of time. This buffering would 
allow iCES to complete the negotiation phase and further deliver data flows to the 
destination host.    
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8 Conclusion 

The purpose of this thesis was to develop CETP as a new tunneling protocol over an IP 

layer or directly on top of an Ethernet frame in order to transport data flows and control 

information from one customer network to another. This research work also includes the 

policy control of CETP. The developed prototype was evaluated with various testing 

scenarios. The test results prove that CETP can be used as means for edge-to-edge 

communication and signaling.  

Within this thesis, Customer Edge Switching with the help of CETP provides global 

connectivity for hosts and servers residing in the private address spaces. This approach 

relieves the IPv4 address shortage by separating the dual role of an IP address as an 

identifier and locator at the edge node. In the test environment, we have assumed that both 

communicating parties reside in two different private networks and are identified by 

arbitrary type of IDs and located using private addresses. The reason is that in this work; 

we only studied inter-CES communication in that all traffic from/to the private host must 

go through the CES. 

The Customer Edge Switching is targeted to eliminate address spoofing and improve trust 

and security among disparate customer networks. CETP assists CES devices to achieve 

this goal through performing a return routability check on naming and forwarding level 

and by signing the control information. Additionally, the CES by means of CETP enforces 

various packet admission policies to each ongoing session. More specifically, the CES 

takes advantage of the CETP control TLVs to declare the information which the 

destination host requires from the sender before successful connection establishment. 

As this thesis has been done as a part of a larger project whose different components were 

implemented with Python, this prototype was also programmed with Python and thereby 

was not optimized in terms of performance. The performance of the current prototype can 

be enhanced considerably, if it is recoded with C / C++. The developed algorithms within 

this prototype are well-documented so that further functionalities can be added smoothly. 
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However, this prototype applies static admission policies to ongoing connections, in a 

future work; the policy initialization can be dynamic and changed according to the network 

condition and end-point’s needs. We believe that this topic must be studied in separate 

research work. Furthermore, a future prototype instead of hardcoded certificates can 

exploit the public key infrastructure to derive required certificates and perform assurance 

queries. 

The developed prototype uses some basic policy constraints to enforce different policies. 
However, we expect that in a future implementation each CES device can define more 
complex policy constrains that specify the acceptable and feasible policies systematically. 
For example, the policy definition is not really useful if its Offerc policy vector includes 
certain TLV type while that TLV does not exist on the Available policy vector. This means 
that the CES cannot reply to the queried control information, however, according to the 
Offerc policy vector the CES is allowed to provide the control information for that TLV 
type.  

It is worthy to mention that this thesis work was integrated to the latest version of the CES 

program which is adapted to the open flow design and tested with a wide variety of test 

cases. On the contrary, the mobility and multi-homing functionalities for CETP are not 

implemented within this work and are left for the future implementation.       
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Appendices 

Appendix A 
 
   TLV TLV-Code 

range 
Query 
mnemonics 

Response 
mnemonics 

Reliable 
Response 
mnemonics 

ACK 
mnemonic 

New ID type 0x4×(0x1.0x7F)  IDQ  -- -- -- 
IPv4 Payload 
Encapsulation 

0x204…0x207 4PEQ  4PER  4PERR  4PEA 

IPv6 Payload 
Encapsulation 

0x208…0x20B 6PEQ  6PER  6PERR  6PEA 

Ethernet 
Payload 
Encapsulation 

0x20C…0x20F EPEQ  EPER  EPERR  EPEA 

IPv4 RLOC  0x404…0x407 4RQ 4RR 4RRR 4RA 
IPv6 RLOC  0x408…0x40B 6RQ 6RR 6RRR 6RA 
Ethernet RLOC  0x40C…0x40F ERQ ERR ERRR ERA 
TOUT  0x604…0x607 TQ TR TRR TA 
Cookie  0x60A…0x60B 

 
 --  -- CORR COA 

CA Address  0x60C…0x60F CAQ CAR CARR CAA 
Domain 
information 

0x610…0x613 DQ DR DRR DA 

Signature 0x614…0x617 SQ SR SRR SA 

Unexpected 
Message report 

0x619…0x61B -- UR URR UA 

Backoff Code 0 0x681…0x683 -- BR0 BRR0 BA0 

Backoff Code 1 0x685…0x687 -- BR1 BRR1 BA1 
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Appendix B 
class CETP(Packet): 
    name = "CETP" 
    fields_desc = [ 
      # Version field 
        BitField("version", 1, 3), 
        #Flags Part 
        FlagsField("flags", 0, 2, "CR"),  
        #Header Length 
        BitField("HL",0,11), 
        #Length of whole packet 
        ShortField("PayloadLength",0), 
        #source identification 
        ByteField("SourceType", 0), 
        ByteField("SourceLen", 0), 
        #destination identification 
        ByteField("TargetType", 0), 
        ByteField("TargetLen", 0), 
         
        StrLenField("sourceID", "", length_from=lambda pkt:pkt.SourceLen), 
        #Destination ID 
        StrLenField("targetID", "", length_from=lambda pkt:pkt.TargetLen), 
        # List of TLVs 

 ConditionalField(StrLenField("TLVs", "", length_from=lambda pkt:pkt.HL-       
pkt.SourceLen-pkt.TargetLen-8),lambda pkt:pkt.flags == 2), 

        #data plane in CETP 
        StrField ("Payload", ""), 
      ] 
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Appendix C 
Outbound Policy Number One: 
Role = outbound 
ID-Reqc = RANDOM                                                                
Reqc=  
RR-Reqc = TOUT, IPv4_RLOC, IPv6_RLOC 
Offerc = IPv4_RLOC 
Available= FQDN, TOUT, IPv4_RLOC, Cookie, CA_Address, Signature, 
Ether_Payload_encapsulation 

Outbound Policy Number Two: 
Role=outbound 
ID-Reqc=RANDOM                                                                
Reqc= TOUT 
RR-Reqc=TOUT, IPv4_RLOC, IPv6_RLOC 
Offerc= Error_code1 
Available=FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature, 
MAC_RLOC 
 
 
Outbound Policy Number Three: 
Role = outbound 
ID-Reqc = RANDOM                                                                
Reqc = FQDN, IPv4_RLOC, Cookie, Error_code1 
RR-Reqc= Error_code1 
Offerc = 
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature 

Outbound Policy Number Four: 
Role = outbound 
ID-Reqc = RANDOM                                                                
Reqc = FQDN, MAC_RLOC, IPv6_RLOC, Cookie 
RR-Reqc = IPv4_RLOC 
Offerc = IPv6_RLOC, FQDN 
Available= IPv4_Payload_encapsulation, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie 
 
Outbound Policy Number Five: 
Role = outbound 
ID-Reqc = RANDOM                                                                
Reqc = TOUT 
RR-Reqc = 
Offerc = IPv4_RLOC, MAC_RLOC, IPv6_RLOC, FQDN 
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature 

Outbound Policy Number Six: 
Role = outbound 
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ID-Reqc = RANDOM                                                                
Reqc = FQDN, Cookie 
RR-Reqc =TOUT 
Offerc = IPv4_RLOC, MAC_RLOC, IPv6_RLOC, FQDN 
Available = Cookie, CA_Address, Signature 

Outbound Policy Number Seven: 
Role = outbound 
ID-Reqc = RANDOM                                                                
Reqc = FQDN, IPv4_RLOC, IPv6_RLOC, Cookie 
RR-Reqc = IPv4_RLOC, IPv6_RLOC 
Offerc =IPv6_RLOC 
Available = IPv4_RLOC 

Outbound Policy Number Eight: 
Role = outbound 
ID-Reqc = RANDOM                                                                
Reqc = MAC_RLOC 
RR-Reqc = MAC_RLOC, Signature 
Offerc = IPv4_RLOC 
Available = Ether_Payload_encapsulation, FQDN, TOUT, IPv4_RLOC, CA_Address, 
Signature 

Outbound Policy Number Nine: 
Role = outbound 
ID-Reqc = RANDOM                                                               
Reqc = Signature, CA_Address, IPv6_RLOC 
RR-Reqc = TOUT, Signature 
Offerc = IPv4_RLOC, MAC_RLOC 
Available = FQDN, TOUT, IPv4_RLOC, Cookie, Signature 

Outbound Policy Number Ten: 
Role = outbound 
ID-Reqc = RANDOM                                                                
Reqc= 
RR-Reqc = IPv6_RLOC 
Offerc = 
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature 
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Appendix D 
Inbound Policy Number One: 
Role = inbound 
ID-Reqc = MAID 
Reqc = Signature, CA_Address, FQDN, IPv4_RLOC, IPv6_RLOC, 
Ether_Payload_encapsuation, IPv4_Payload_encapsulation 
RR-Reqc = IPv4_RLOC, MAC_RLOC, TOUT 
Offerc = FQDN, IPv4_RLOC, IPv6_RLOC 
Available = Cookie, CA_Address, Signature, IPv4_RLOC, MAC_RLOC 

Inbound Policy Number Two: 
Role = inbound 
ID-Reqc = RANDOM 
Reqc = MAC_RLOC, IPv4_RLOC, IPv6_RLOC, Signature, Cookie, 
IPv4_Payload_encapsulation 
RR-Reqc = CA_Address 
Offerc = TOUT 
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature, 
Ether_Payload_encapsulation 

Inbound Policy Number Three: 
Role = inbound 
ID-Reqc = MOC 
Reqc = CA_Address, FQDN, IPv6_RLOC, MAC_RLOC 
RR-Reqc= 
Offerc = FQDN 
Available = FQDN, TOUT, CA_Address, Signature 

Inbound Policy Number Four: 
Role = inbound 
ID-Reqc = RANDOM 
Reqc = TOUT, Signature, CA_Address, IPv4_RLOC 
RR-Reqc = Signature 
Offerc = Signature, TOUT 
Available = FQDN, TOUT, Ether_Payload_encapsulation, IPv4_Payload_encapsulation, 
Signature 

Inbound Policy Number Five: 
Role = inbound 
ID-Reqc= MAID 
Reqc = IPv4_Payload_encapsulation, Cookie 
RR-Reqc = Signature, TOUT 
Offerc = IPv4_RLOC, IPv6_RLOC 
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature 

Inbound Policy Number Six: 
Role = Inbound 
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ID-Reqc = RANDOM 
Reqc = Signature, CA_Address, FQDN, IPv4_RLOC, IPv6_RLOC, Cookie 
RR-Reqc = IPv4_RLOC, IPv6_RLOC 
Offerc = MAC_RLOC 
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie 

Inbound Policy Number Seven: 
Role = inbound 
ID-Reqc = MOC 
Reqc = Signature, CA_Address, FQDN, IPv4_RLOC, IPv6_RLOC 
RR-Reqc= 
Offerc = Signature, Error_code1, IPv4_RLOC, IPv6_RLOC 
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature, 
MAC_RLOC 

Inbound Policy Number Eight: 
Role = inbound 
ID-Reqc = RANDOM 
Reqc = 
RR-Reqc = FQDN, Signature 
Offerc = 
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature 

Inbound Policy Number Nine: 
Role = Inbound 
ID-Reqc = MAID 
Reqc = TOUT, Error_code1, FQDN, IPv4_RLOC, IPv6_RLOC 
RR-Reqc = CA_Address, Signature 
Offerc = Signature, TOUT 
Available = FQDN, TOUT, IPv4_RLOC, IPv6_RLOC, Cookie, CA_Address, Signature 

 
Inbound Policy Number Ten: 
Role = inbound 
ID-Reqc = RANDOM 
Reqc = Signature, CA_Address, FQDN, IPv4_RLOC, IPv6_RLOC 
RR-Reqc = TOUT 
Offerc = CA_Address, Signature, IPv6_RLOC 
Available = Cookie, CA_Address, Signature, TOUT 
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Appendix E 
Testing Scenario Number 1: 

In this test case, all local hosts in the private network A behind CES A tried to ping host B 
residing in the private network B behind CES B at the same time. For this scenario, host B 
applies inbound policy number one to all incoming connections.  

Outbound 
Policy 
Number 

Host 
Address  

 Setup    
Time (ms) 

 DNS 
Process 
Time(ms) 

Ping 
Waiting 
Time (ms) 

Expected 
Result 

Failure Reason 

  1 10.12.0.121   59           77 216 Success     ------------     
  2 10.12.0.122   X Failure X Fail Host does not 

support MAID 
ID type.  

  3 10.12.0.123  X 76 Failure Fail Not support any 
encapsulation 
type. 

  4 10.12.0.124   X 61 Failure Fail Not support 
FQDN TLV. 

  5 10.12.0.125   X Failure X Fail Host does not 
support MAID 
ID type. 

  6 10.12.0.126   X 64 Failure Fail Not supported 
any RLOC. 

  7 10.12.0.127   X 42 Failure Fail Not support 
signature. 

  8 10.12.0.128   X Failure X Fail Host does not 
support MAID 
ID type. 

  9 10.12.0.129   X 75 Failure Fail Not support CA 
address. 

  10 10.12.0.130   X 67 Failure Fail Not support any 
encapsulation 
type. 

 
NB1: inbound CES based on its policy required MAID ID type. 
NB2: each host starts its negotiation with random ID type. 
NB3: hosts with 10.12.0.121, 10.12.0.125 and 10.12.0.128 IP addresses do not support 
MAID ID type. 
NB4: In case of success, in this testing scenario set up CETP Connection could be 
completed in two round trips. In contrast, in case of failure three round trips are needed. 
NB5: Setup CETP Connection Time = since the DNS reply is received from the DNS 
server until the modified DNS reply is forwarded to the host by outbound CES. 
DNS process Time = since a host sends the DNS Query till the modified DNS reply is 
forwarded to the host by outbound CES. 
ping waiting time = since a sends  a ping request till it receives the ping reply from the 
server residing behind the inbound CES. 
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NB6: Number of sent TLVs by inbound CES = 5 (full requirement) 

Testing Scenario Number 2: 

In this test case, host B applies inbound policy number two to all incoming connections. 

Outbound 
Policy 
Number 

 Host       
Address  

 Setup 
Time(ms) 

 DNS 
Process 
Time(ms) 

Ping 
Waiting 
Time(ms) 

Expected 
Result 

Failure Reason 

  1 10.12.0.121 X 46 Failure Fail Not support IPv4 
encapsulation type. 

  2 10.12.0.122 X 34            Failure Fail Not support IPv4 
encapsulation type 

  3 10.12.0.123 X 43 Failure Fail Not support IPv4 
encapsulation type. 

  4 10.12.0.124 X 43 Failure Fail Not support 
signature. 

  5 10.12.0.125 X 88 Failure  
Fail 

Not support IPv4 
encapsulation type. 

  6 10.12.0.126 X 43 Failure Fail Not supported any 
RLOC. 

  7 10.12.0.127 X 43 Failure Fail Not support 
signature. 

  8 10.12.0.128 X       39 Failure   
Fail 

Not support any 
encapsulation type. 

  9 10.12.0.129 X 65 Failure Fail Not support any 
encapsulation type. 

  10 10.12.0.130 X 50 Failure Fail Not support any 
encapsulation type. 

 

NB1: In case of success, in this testing scenario CETP connection setup could be 
completed in one round trip. In contrast, in case of failure two round trips are needed to 
complete negotiations. 

Testing Scenario Number 3: 

In this test case, host B applies inbound policy number three to all incoming connections. 

Outbound 
Policy 
Number 

      Host 
   Address  

 Setup 
Time (ms) 

 DNS 
Process 
Time(ms) 

Ping 
Waiting 
Time(ms) 

Expected 
Result 

Failure Reason 

  1 10.12.0.121 X 48 Failure Fail Not support any 
RLOC. 
 
 

  2 10.12.0.122 28 39 131 success ----------------- 
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  3 10.12.0.123  X Failure  X Fail Host does not 
support MOC ID 
type. 
 

  4 10.12.0.124 X 45 Failure Fail Not support CA 
address. 

  5 10.12.0.125 74 100 198 success ---------------- 
  6 10.12.0.126 X Failure  X Fail Host does not 

support MOC ID 
type. 
 

  7 10.12.0.127 X 48  Failure Fail Not support  
required TLVs. 
 

  8 10.12.0.128 X 46 Failure  Fail Not support any 
RLOC type. 

  9 10.12.0.129 X Failure X Fail Host does not 
support MOC ID 
type 

  10 10.12.0.130 
 

26 
 

43 131 success  ------------------ 

 
NB1: inbound CES based on its policy required MOC ID type. 
NB2: each host starts its negotiation with random ID type. 
NB3: hosts with 10.12.0.123, 10.12.0.126 and 10.12.0.129 IP addresses do not support 
MOC ID type. 
NB4: In case of success, in this testing scenario CETP connection setup could be 
completed in two round trips. In contrast, in case of failure three round trips are needed. 
NB5: Number of sent TLVs by inbound CES = 7 (full requirement) 

Testing Scenario Number 4: 

In this test case, host B applies inbound policy number four to all incoming connections. 

Outbound 
Policy 
Number 

      Host 
   Address  

 Setup   
Time (ms) 

 DNS 
Process 
Time (ms) 

Ping 
Waiting 
Time (ms) 

Expected 
Result 

Failure Reason 

  1 10.12.0.121 40 57 181 success ----------------- 
  2 10.12.0.122 45 56 177 success ----------------- 
  3 10.12.0.123 49 73 202 success ----------------- 
  4 10.12.0.124 X 59 Failure Fail Not support 

FQDN TLV. 
  5 10.12.0.125 82 106 255 success ---------------- 
  6 10.12.0.126 X 63 Failure Fail Host does not 

support ID type. 
  7 10.12.0.127 X 63 Failure Fail Not support 

time out TLV. 
  8 10.12.0.128 45 58 158 success ----------------- 
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  9 10.12.0.129 44 62 Failure Fail Not support CA 
address. 

  10 10.12.0.130 
 

45 63 189 success  ---------------- 

 
NB1: In case of success, in this testing scenario CETP connection setup could be 
completed in one round trip. In contrast, in case of failure, two round trips are needed to 
complete negotiations. 
NB2: We just consider successful cases that have been completed successfully. 
NB3: Number of sent TLVs by inbound CES = 4 (full requirement) 

Testing Scenario Number 5: 

In this test case, host B applies inbound policy number five to all incoming connections. 

Outbound 
Policy 
Number 

      Host 
   Address  

 Setup   
Time (ms) 

 DNS 
Process 
Time (ms) 

Ping 
Waiting 
Time (ms) 

Expected 
Result 

Failure Reason 

  1 10.12.0.121 X 51 Failure Fail Not support IPv4 
encapsulation 
type. 

  2 10.12.0.122 X Failure X Fail Host does not 
support ID type. 

  3 10.12.0.123 X 46 Failure Fail  Not support IPv4 
encapsulation 
type. 

  4 10.12.0.124 152 172 468 success --------------- 
  5 10.12.0.125 X Failure X Fail Host does not 

support ID type. 
  6 10.12.0.126 X 44 Failure Fail Not support any 

required TLV. 
  7 10.12.0.127 X 44 Failure Fail Not support any 

required TLV. 
  8 10.12.0.128 X Failure X Fail Host does not 

support ID type. 
  9 10.12.0.129 X 58 Failure Fail Not support IPv4 

encapsulation 
type. 

  10 10.12.0.130 
 

X 49 Failure Fail Not support IPv4 
encapsulation 
type. 

 

Testing Scenario Number 6: 

In this test case, host B applies inbound policy number six to all incoming connections. 

 



 

 116 

Outbound 
Policy 
Number 

    Host 
Address  

Setup 
Time(ms) 

 DNS 
Process 
Time(ms) 

Ping 
Waiting 
Time(ms) 

Expected 
Result 

Failure Reason 

  1 10.12.0.121 19 37 146 success ----------------- 
  2 10.12.0.122 15 27 134 success ----------------- 
  3 10.12.0.123 24 42 154 success ----------------- 
  4 10.12.0.124 X 46 Failure Fail No signature TLV.  
  5 10.12.0.125 60 84 21 success -------------- 
  6 10.12.0.126 X 32 Failure Fail Not support any 

RLOC. 
  7 10.12.0.127 X 37 Failure Fail Not support IPv4 

encapsulation. 
  8 10.12.0.128 18 34 139 success -------------- 
  9 10.12.0.129 X 33 Failure Fail Not support  IPv4 

encapsulation 
  10 10.12.0.130 

 
20 37 156 success  ---------------- 

 
NB1: In case of success, in this testing scenario CETP connection setup could be 
completed in one round trip. In contrast, in case of failure, two round trips are needed to 
completed negotiation. 
NB2: I just consider successful cases that have been completed successfully. 
NB3: Number of sent TLVs by inbound CES = 7   (full requirement) 

Testing Scenario Number 7: 

In this test case, host B applies inbound policy number seven to all incoming connections. 

Outbound 
Policy 
Number 

    Host 
Address  

Setup 
Time(ms) 

 DNS 
Process 
Time(ms) 

Ping 
Waiting 
Time(ms) 

Expected 
Result 

Failure Reason 

1 10.12.0.121 104 119 251 success -------------- 

2 10.12.0.122 106 120 247 success  -------------- 

3 10.12.0.123  X Failure  X Fail Host does not 
support MOC ID 
type. 
 

4 10.12.0.124 X 93 Failure Fail Not support 
signature. 
 

5 10.12.0.125 149 173 276 success --------------- 

6 10.12.0.126 X Failure  X Fail Host does not 
support MOC ID 
type. 
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7 10.12.0.127 X 100 Failure Fail Not support any of 
required control 
TLVs except 
RLOC. 
 

8  10.12.0.128 83 94 199 success --------------- 

9 10.12.0.129  X Failure  X Fail Host does not 
support MOC ID 
type. 

10 10.12.0.130 103 123 253 success  -------------- 
 

 

NB1: inbound CES based on its policy required MOC ID type. 
NB2: each host starts its negotiation with random ID type. 
NB3: hosts with 10.12.0.123, 10.12.0.126 and 10.12.0.129 IP addresses do not support 
MOC ID type. 
NB4: In case of success, in this testing scenario CETP connection setup could be 
completed in two round trips. In contrast, in case of failure three round trips are needed. 
NB5: Number of sent TLVs by inbound CES = 6 (full requirement) 

Testing Scenario Number 8: 

In this test case, host B applies inbound policy number eight to all incoming connections. 

Outbound 
Policy 
number 

    Host          
Address  

Setup 
Time(ms) 

 DNS 
process 
Time(ms) 

Ping 
waiting 
Time(ms) 

Expected 
result 

Failure reason 

  1 10.12.0.121 18 31 106 success ------------ 
  2 10.12.0.122 15 31 106 success ------------ 
  3 10.12.0.123 16 32 121 success ----------- 
  4 10.12.0.124 20 35 120 success ----------- 
  5 10.12.0.125 59 86 185 success ----------- 
  6 10.12.0.126 16 36 114 success ------------- 
  7 10.12.0.127 20 32 108 success ------------- 
  8 10.12.0.128 11 24 100 success ------------- 
  9 10.12.0.129 43 55 133 success ------------ 
  10 10.12.0.130 

 
18 30 107 success ------------- 

 

NB1: In case of success, in this testing scenario CETP connection setup could be 
completed in one round trip. In contrast, in case of failure, two round trips are needed to 
completed negotiation. 
NB2: Number of sent TLVs by inbound CES = 0 (full requirement) 
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Testing Scenario Number 9: 

In this test case, host B applies inbound policy number nine to all incoming connections. 

Outbound 
Policy 
number 

      Host   
Address  

 Setup 
Time 
(ms) 

 DNS 
process 
Time(ms) 

Ping 
waiting 
Time(ms) 

Expected 
result 

Failure reason 

  1 10.12.0.121 53 68 Failure Success    -----------     
  2 10.12.0.122 X Failure X Fail Host does not 

support MAID ID 
type. 

  3 10.12.0.123 X 65 Failure Fail Unknown required 
TLV error_code1. 

  4 10.12.0.124 X 87 Failure Fail Unknown required 
TLV error_code1. 

  5 10.12.0.125 X Failure X Fail Host does not 
support MAID ID 
type. 

  6 10.12.0.126 X 72 Failure Fail Unknown required 
TLV error_code1. 

  7 10.12.0.127 X 69  Failure Fail Unknown required 
TLV error_code1. 
 

  8 10.12.0.128 X Failure X Fail Host does not 
support MAID ID 
type. 

  9 10.12.0.129 X 64  Failure Fail Unknown required 
TLV error_code1. 

  10 10.12.0.130 X 73 Failure Fail Unknown required 
TLV error_code1. 

 

NB1: inbound CES based on its policy required MAID ID type. 
NB2: each host starts its negotiation with random ID type. 
NB3: hosts with 10.12.0.121, 10.12.0.125 and 10.12.0.128 IP addresses do not support 
MAID ID type. 
NB4: In case of success, in this testing scenario CETP connection setup could be 
completed in two round trips. In contrast, in case of failure three round trips are needed. 
NB5: Number of sent TLVs by inbound CES = 7   (full requirement) 
          There is not any successful connection in this scenario. 

Testing Scenario Number 10: 

In this test case, host B applies inbound policy number ten to all incoming connections. 

Outbound 
Policy 
number 

      Host 
Address  

 Setup 
Time(ms) 

 DNS 
process 
Time(ms) 

Ping 
waiting 
Time(ms) 

Expected 
result 

Failure reason 

  1 10.12.0.121 44 55 176 success ---------- 



 

 119 

  2 10.12.0.122 45 59 18 success ---------- 
  3 10.12.0.123 42 60 197 success ---------- 
  4 10.12.0.124 X 55 Failure Fail Not support signature. 
  5 10.12.0.125 80 105 254 success ---------- 
  6 10.12.0.126 X 52 Failure Fail Not support FQDN.  
  7 10.12.0.127 X 58 Failure Fail Not support CA 

address. 
  8 10.12.0.128 45 65 167 success  --------- 
  9 10.12.0.129 X 58 Failure Fail 

 
Not support CA 
address. 
  

 
NB1: In case of success, in this testing scenario CETP connection setup could be 
completed in one round trip. In contrast, in case of failure two round trips are needed to 
completed negotiation. 
NB2: Number of sent TLVs by inbound CES = 5 (full requirement) 
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