
Customer Edge Switching &
Realm Gateway
Tutorial Session – Day 2

Jesus Llorente Santos
jesus.llorente.santos@aalto.fi

www.re2ee.org

August 21st, 2015

Outline

• Recap from yesterday
– Current Internet Model
– Issues with the Current Model - NATs

• Benefits of Realm Gateway
• How does it work

– Role of DNS
• Improving Efficiency and Scalability
• Application and Protocol Compatibility

– Application Layer Gateways
• Additional Material

– RGW64 – Transition to IPv6
– Introduction to Testbed, System Architecture, OpenFlow…
– ALGs and Future ALG Engine

25.9.2015 2

Current Internet Model

• Internet goes mobile
– Massive growth of connected users and devices
– Expect an exponential growth with the arrival of IoT

• Dominant presence of Network Address Translator (NAT)
– Driven by the IPv4 address exhaustion
– Allow multiple hosts to connect to the Internet with the same public IP

address
– Separation of private and public networks

• Reuse same private networks over and over (~18M IPs)
• 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16

– Requires binding state of IPs and ports when packets traverse the
NAT: public-to-private and private-to-public

– Acts as a first layer of security blocking inbound connections

25.9.2015 3

Current Internet Model

• Location of communicating nodes
– Users typically located in private networks behind NATs

• Reduce the amount of public IP addresses needed
• Need to be able to initiate connections towards public servers
• Example: computers, laptops, smartphones, etc.

– Public servers and/or services must be publicly reachable
• Directly reachable at IP layer via routing
• Reachable via a proxy or frontend
• Need to serve requests from connecting users
• Example: Mail, SSH, HTTP(S), etc.

25.9.2015 4

Current Internet Model

• Identification of hosts and services
– By IP address

• Valid on public networks may cause problems across private
networks

• Binds together host identity and routing locator
• Not always easy to remember: 130.233.224.254

– By name
• Typically following a hierarchical naming scheme, i.e. Fully Qualified

Domain Name (FQDN) in DNS
• Decouples host identity from routing locator
• Easier to remember: comnet.aalto.fi

25.9.2015 5

Current Internet Model

• Domain Name System – DNS
– Resolves FQDN names to IP addresses (most typical function)
– Transaction based Query/Response
– Client-Server architecture

25.9.2015 6

Current Internet Model

• Some example of DNS records
– A: Resolution of IPv4 addresses

• a.foo. IN A 192.0.2.100
– AAAA: Resolution of IPv6 addresses

• a.foo. IN AAAA 2001:DB8::192.0.2.100
– CNAME: Canonical names pointing to other domains

• a.foo. IN CNAME another-host.foo.
– NAPTR: Name authority pointer

• IN NAPTR 100 10 "U" "E2U+sip" "!^.*$!sip:a@demo.foo!" .
– SRV: Service location including ports and protocols

• _ssh._tcp.a.foo. ttl IN SRV p w 22 a.foo.

25.9.2015 7

Current Internet Model

25.9.2015 8

Private network
192.168.0.0/24

Private network
192.168.0.0/24

Public Internet

NAT NAT

8.8.8.8

aalto.fi
1.2.3.4

130.233.224.100 128.214.222.24
google.com

sauna.fi

• Internet Architecture

Issues with the current Internet Model

• NAT introduces reachability problem
– Block inbound connections from reaching the private network
– Connection state keeps track of private, public and remote IP

addresses, ports numbers and protocols in use.

– NAT-unfriendly protocols are negatively affected by NATs
• Use of IP address literals or separate control/data connections
• Require specific Application Layer Gateways e.g. SIP, FTP

– Traversal of the NAT requires additional protocols
• STUN/TURN/ICE
• Results in increased delays during connection setup
• Requires specific application code and increases network traffic

25.9.2015 9

Issues with the current Internet Model

25.9.2015 10

• More on STUN / TURN / ICE

Issues with the current Internet Model

• Unwanted traffic: Any source can send a packet to any
destination address

• Possibility of source address spoofing makes it difficult to
attribute evidence of misbehavior to the legitimate source

25.9.2015 11

Benefits of Realm Gateway (RGW)

• Compatible with current NATs
– Implemented as Address and Port-Dependent as per RFC-4787
– Do not require changes to either hosts or protocols
– Outbound connections are handled exactly the same

• Provide better-than-NAT service
– Inbound connections are handled by the Circular Pool
– Overcome the reachability problem towards private networks with

temporary public address allocation and reuse

• Supports ALGs for NAT-unfriendly protocols
– Compatible with current NAT-Traversal protocols

25.9.2015 12

Benefits of Realm Gateway (RGW)

• Scalable solution with efficient address reuse
– On the public side only requires a single IP address
– Additional public IP addresses exponentially increase scalability

• Enables deployment one network at a time
– Require redirection of DNS zone of authority
– No other changes required in the network nodes
– Reuses well-known and widely-used protocols, i.e. DNS

• Additional features
– Implements compatibility with IPv6 networks featuring a stateful

implementation of NAT64 and DNS64

25.9.2015 13

How does RGW work?

• RGW acts as a DNS leaf node, hosting the DNS records of the
hosts connected to the private network

• The Circular Pool algorithm contains a set of public IP
addresses {R1,R2,R3}

• Incoming DNS requests (A) arrive at the RGW requesting an IP
address to communicate with a private host
– An address is allocated from the Circular Pool and offered in the DNS

response. TTL is set to zero to avoid caching in intermediate nodes
– The address is reserved for a time Tmax ≈ 2 sec before is

automatically released
• Following incoming data packets not belonging to an ongoing

connection, can claim the state
– The address is released upon creating the new connection
– A public host succeeds at communicating with a private host

25.9.2015 14

How does RGW work?

25.9.2015 15

Improving Address Efficiency

• Could we use DNS to specify the destination service and
create a specific binding in RGW?
– Yes! DNS SRV records do exactly that

• Example: _stun._tcp.example.net
• Not used by many applications

• Can we use DNS A records to mimic SRV behaviour?
– Yes! We call them Service FQDN
– They include the port and protocol used for the data connection
– Example: tcp22.hosta.foo
– SFQN are simple domain names that encode meta information to

create a new naming scheme

25.9.2015 16

Improving Address Efficiency

• The Circular Pool algorithm understands these SFQDN
• Rather than reserving a whole IP address per inbound

connection we can create specific bindings
– New binding: (Public IP, port, protocol)

• It is possible to overload the same IP address with
multiple SFQDN connections
– A new IP address is only required if there is already a waiting

state for the same tuple (port, protocol)

• SFQDN maximizes address reuse and boosts efficiency
of the Circular Pool but requires the sending host to
adhere to the new naming scheme

25.9.2015 17

Improving Address Efficiency

25.9.2015 18

Realm Gateway Scalability

• Number of new connections that can be established per unit of time
with an acceptable level of success at the first DNS request

• Define service time Tservice, as the time duration that a public IP
address RX is reserved for establishing an inbound connection
– Tservice spans the time from the creation of the temporary binding state

until the first data packet of the connection is received, when RX is
released and returned to the pool.

25.9.2015 19

Realm Gateway Scalability

• For standard FQDN queries the upper bound comes
determined by the expression

• For Service FQDN queries with built-in connecting service
the upper bound comes determined by the expression

25.9.2015 20

િ ൌ 	 ࢋࢠ࢏࢙	࢒࢕࢕ࡼ
	ࢋࢉ࢏࢜࢘ࢋ࢙ࢀ

િ′ ൌ ࢖࢏ࡺ	࢞	࢕࢚࢕࢘࢖ࡺ	࢞	࢚࢘࢕࢖ࡺ	
ࢋ࢓࢏࢚	ࢋࢉ࢏࢜࢘ࢋࡿ

Realm Gateway Scalability

• Test 1: 100% FQDN
• Test 2: 50% FQDN + 50% SFQDN 5 geometric
• Test 3: 50% FQDN + 50% SFQDN 2x5 geometric
• Test 4: 100% SFQDN 2x5 geometric

25.9.2015 21

50 ms delay
60 conn/sec

Realm Gateway Scalability

25.9.2015 22

• Test 2: 50% FQDN + 50% SFQDN 5 geometric
• Test 3: 50% FQDN + 50% SFQDN 2x5 geometric 50 ms delay

60 conn/sec

RGW Application Layer Gateway

Application Layer Gateways (ALG) developed for the following protocols
• ICMP and ICMP error packets

– Address transformation when traversing the node
• UDP based SIP – Session Initiation Protocol

– Replacement of IP address literals by FQDN
– Create inbound mapping for media streams

• TCP based FTP – File Transfer Protocol
– Replacement of IP address literals by FQDN
– Create inbound mapping for data streams
– Introduces an offset in subsequent TCP segments (SEQ, ACK)

• TCP based RTSP - Real Time Streaming Protocol
– Replacement of IP address literals by FQDN
– Create inbound mapping for media streams
– Introduces an offset in subsequent TCP segments (SEQ, ACK)

25.9.2015 23

RGW Application Layer Gateway

FTP Case – Stateful ALG with TCP header rewrite

25.9.2015 24

Offset ൌ Lengthnew – Lengthoriginal ൅ ΔOffset
ACKnew ൌ ACKcurrent – Offset
SEQnew ൌ SEQcurrent ൅ Offset

RGW Application Layer Gateway

• Web servers in private hosts are supported by RGW via
an HTTP/HTTPS reverse proxy

• RGW redirects all incoming queries containing the prefix
www to a single IP address where the proxy is listening
– hosta.cesa.isp => Uses Circular Pool
– tcp80.hosta.cesa.isp => Uses Circular Pool on TCP port 80
– www.hosta.cesa.isp => Uses reverse proxy for hosta.cesa.isp

• Currently, the prototype makes use of Nginx at the private
hosts and as the reverse proxy of RGW

25.9.2015 25

Realm Gateway Compatibility

25.9.2015 26

Protocol Compatibility RGW

Extra 1: RGW64 Transition to IPv6

Transitions mechanisms defined by IETF – RFC.4213
• Dual-Stack

– Requires both IPv4 and IPv6 hosts and networks
– Gradual migration towards IPv6-only

• Tunnelling
– Using IPv6 links over currently deployed IPv4 networks
– Examples: 6to4, 6rd, ISATAP, Teredo, etc.

• Translation
– Framework for IPv4/IPv6 Translation – RFC.6144
– Defines protocol translations for IP and DNS – NAT64/DNS64
– Examples: Microsoft, Cisco, Juniper, Ecdysis, TAYGA, ISC Bind
– Experiments: J. Arkko and A. Keranen, Experiences from an IPv6-

Only Network RFC.6586

25.9.2015 27

Extra 1: RGW64 Transition to IPv6

Framework for IPv4/IPv6 Translation – Use Cases

25.9.2015 28

Extra 1: RGW64 Transition to IPv6

Design choices: Stateless vs Stateful

25.9.2015 29

Stateless NAT64 Stateful NAT64

1:1 IPv6-to-IPv4 translations N:1 IPv6-to-IPv4 translations

No conservation of IPv4 addresses Conservation of IPv4 addresses

End-to-end address transparency Address overloading lacks
end-to-end transparency

No state or binding per translation Requires state and binding per
translation

Mandatory IPv4-translatable-IPv6
address assignment Arbitrary IPv6 address assignment

Requires manual or dynamic host
configuration for IPv6 addressing

It can use either manual, dynamic
or stateless configuration for IPv6

NAT 64 Operating Modes

Extra 1: RGW64 Transition to IPv6

Packet forwarding – NATxx
• Built-in support for all communicating scenarios

– NAT44: IPv4 private network and IPv4 Internet – Traditional NAT
– NAT46: IPv4 private network and IPv6 Internet
– NAT64: IPv6 private network and IPv4 Internet
– NAT66: IPv6 private network and IPv6 Internet

Address synthesis of DNS records – DNS64
• Borrow the concept of IP proxy address from CES

– Proxy IPv6 addresses as Unique Local Address (ULA)
• Locally generated so no globally unique (does not need to be!)
• Prefix fc00::/8

– Not compatible with Well-Known Prefix (64:ff9b::/96)
• Cannot be used to represent non-global IPv4 addresses

25.9.2015 30

Extra 1: RGW64 Transition to IPv6

Example: IPv6 host to IPv4 Internet via CES/RGW
1. Hosts sends DNS AAAA query to aalto.fi
2. CES issues NAPTR query to aalto.fi

– NAPTR resolution fails => there is no CES service available

3. RGW issues AAAA query to aalto.fi
– AAAA resolution fails => there is no IPv6 service available

4. RGW issues A query to aalto.fi
– A resolution succeeds=> 130.233.224.254

5. RGW answers DNS query with a proxy IPv6 ULA
– Additional connection state is created for NAT64

6. Private IPv6 host can connect to IPv4 Internet

25.9.2015 31

Extra 1: RGW64 Transition to IPv6

Example: IPv4 host to IPv6-only Internet via CES/RGW
1. Hosts sends DNS A query to ipv6.cybernode.com
2. CES issues NAPTR query to ipv6.cybernode.com

– NAPTR resolution fails => there is no CES service available

3. RGW issues A query to ipv6.cybernode.com
– A resolution fails => there is no IPv4 service available

4. RGW issues AAAA query to ipv6.cybernode.com
– AAAA resolution succeeds=> 2001:470:1:1b9::31

5. RGW answers DNS query with a proxy IPv4
– Additional connection state is created for NAT46

6. Private IPv4 host can connect to IPv6-only Internet

25.9.2015 32

Extra 1: RGW64 Transition to IPv6

25.9.2015 33

Protocol Compatibility RGW64

Application in realm
Protocol Direction Result

Private Public
Netcat 4/6

client/server
Netcat 4/6

client/server TCP & UDP In & Out Success

Ping/Echo 4/6 Ping/Echo 4/6 ICMP In & Out Success ALG

Traceroute 4/6 Traceroute 4/6 ICMP Error In & Out Success ALG

NTP client 4/6 NTP server 4/6 UDP Out Success
SSH 4/6

client/server
SSH 4/6

client/server TCP Both Success

HTTP client 4/6 HTTP server 4/6 TCP Outgoing Success

HTTP server 4/6 HTTP client TCP Incoming Success
Proxy

FTP 4/6
client/server

FTP 4/6
client/server TCP Both Untested

ALG

SIP client/server SIP client/server UDP Both Untested
ALG

Skype Skype TCP & UDP Both Fail

Extra 2: Development Architecture

Current testbed relies on Proxmox VE 3.4
• Supports both KVM and containers with OpenVZ
• Containers are more lightweight compared to full-blown VM
• Available at http://proxmox.com/en/proxmox-ve

• Our whole testbed sits on a single VM running Proxmox
– All hosts and nodes are virtualized with containers
– Includes kernel support for OpenvSwitch
– Networking scenario is made of:

• Linux bridges
• OpenvSwitch bridges
• Virtual Ethernet pairs

25.9.2015 34

Extra 2: Development Architecture

25.9.2015 35

Internet
198.18.0.0/24
fc00:bbbb::/64

OVS.B
CES-A network
192.168.0.0/24 OVS.A ISP Transit Network

172.16.0.0/24
fc00:cccc::/64

CES-B network
192.168.0.0/24

DNS

HTTP(S)
DNS DHCP

HTTP(S)
DNS DHCP

Extra 3: OpenFlow Tables

25.9.2015 36

Table 0
Classifier

Table 5
Pre-Mangle

Table 10
Source

FW - ACL

Table 15
ALG

Table 20
Mangle
L3/L4

Table 25
Destination
FW - ACL

Table 30
Dest L2

ARP
Table 40
Output

Packet In

Packet Out

To Controller

Table 35
Post-

Mangle

Metadata is written across tables – provide scope for the packet
Metadata in Table 40 determines forwarding mode and port
Output table supports flow mirroring and monitoring

To ControllerTo Controller

Extra 4: DNS Relay

• Behaves as a regular DNS forwarder
• Supports IPv4 & IPv6 and UDP & TCP
• Encodes meta information in “Additional Records”

– Sender’s IP address, port and protocol

• Defines zones for message forwarding
• Alleviates congestion in signalling channel of the

OpenFlow switch (data path)
– Reduces the PacketIn events received by SDN Controller
– Reduces the parsing required by SDN Controller
– SDN application can receive DNS messages directly via socket

25.9.2015 37

Extra 5: Future ALG System

• ALG design principles:
– Addressing: Traversing realms requires address translation – Use

FQDN if possible! e.g. SIP
– Connection State: TCP-based protocols that require payload

modifications require state to track the introduced offset and
modify the TCP header of following segments

• Interworking with OpenFlow switch and OpenFlow Table
• Signalling channel with SDN CES/RGW application

– Request connection or host information
– Establish new bindings in the NATxx

• Stores own connection table for specific ALG flows
– Any stateful ALG is required to maintain it’s own state
– FTP & RTSP modify user payload introducing offsets in data sent

25.9.2015 38

